A Research for the Planetary Gear Noise Development in FF 6th Speed Automatic Transmission

Author(s):  
Hyun-Ku Lee ◽  
Koo-Tae Kang ◽  
Moo-Suk Kim ◽  
Jin-Wook Hur

In order to improve the planetary gear noise of the new developed 6th speed automatic transmission, it needs to understand noise mechanism. Basically, many transmission’s components have an effect on the gear noise. In this paper, planetary gear noise sources which are influenced by gear tooth shapes and backlash among the gears, position of pinion gears, and misalignment of the sun gear are studied and experimented. Also, transfer-path likewise one-way clutch contacted between the carrier and case, and valve-body covers are also researched to reduce the transferred vibration and radiated noise levels. After developing the planetary gear noise, its evaluation specification is adapted to EOL (end of line) equipment to check the transmission’s noise quality in the factory.

Author(s):  
A. Kahraman ◽  
K. Kienzle ◽  
D. M. Zini

A generalized formulation for analyzing speeds and forces of the gear components of planetary automatic transmissions is proposed. The formulation is capable of analyzing any typical one-degree-of-freedom automatic transmission gear train containing any number of simple, compound or complex-compound planetary gear sets. It consists of three components: a kinematic analysis formulation, a gear ratio and kinematic configuration search algorithm, and a power flow analysis formulation. The kinematics module computes rotational speeds of gears and carriers. Given the type and number of planetary gear sets, the search module determines all possible kinematic configurations and gear tooth count combinations that result in a required set of gear ratios while eliminating all kinematic redundancies and unfavorable clutching sequences. The third component, the power-flow analysis formulation, performs a complete static force (power flow) analysis to determine all gear and bearing forces, and clutch and connection torque values. A five-speed transmission example is considered to highlight the capabilities of the proposed formulation.


2021 ◽  
Vol 263 (5) ◽  
pp. 1516-1526
Author(s):  
Hyun Ku Lee ◽  
Moo Suk Kim ◽  
Sa Man Hong ◽  
Dong Kyu Yoo ◽  
Ahmet Kahraman ◽  
...  

In general, gear mechanical loss is associated with the friction of the lubricating contact surface of the gear and bearing that transmit the power, and a no-load spin loss which is load independent occurs due to gear rotation and the interaction of the bearing component with the lubricating element. In order to minimize planetary gear loss, it is desirable to design by checking the efficiency at the concept design stage. However, a design technique that considers the noise and efficiency of a planetary gear set simultaneously has not been achieved so far. In this paper, a program called 'pRMC with EHL' to check together the efficiency and noise that affected by gear specifications has been developed. By using developed program, planetary gear sets specifications have been designed. And through the experimental evaluation, automatic transmission efficiency could be reduced by 0.3% in combination fuel consumption mode and the planetary gear vibration could be also reduced by 10 dB than former design. Through this designing verification and input parameter correlation, a new planetary gear set designing process has been come up with successfully at the concept design stage.


2004 ◽  
Vol 126 (6) ◽  
pp. 1071-1081 ◽  
Author(s):  
A. Kahraman ◽  
H. Ligata ◽  
K. Kienzle ◽  
D. M. Zini

A generalized formulation for analyzing speeds and forces of the gear components of planetary automatic transmissions is proposed. The formulation is capable of analyzing any typical one-degree-of-freedom automatic transmission gear train containing any number of simple, compound or complex-compound planetary gear sets. The formulation consists of three components: a kinematic analysis formulation to compute rotational speeds of gears and carriers, a gear ratio and kinematic configuration search algorithm, and a power flow analysis formulation. The kinematics component computes rotational speeds of gears and carriers. Given the type and number of planetary gear sets, the search algorithm determines all possible kinematic configurations and gear tooth count combinations that result in a required set of gear ratios while eliminating all kinematic redundancies and unfavorable clutching sequences. The third component, the power-flow analysis formulation, performs a complete static force (power-flow) analysis to determine all gear and bearing forces and moments, and clutch and connection torque values. A five-speed transmission example is considered to highlight the capabilities of the proposed formulation.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3736
Author(s):  
Jae-Oh Han ◽  
Won-Hyeong Jeong ◽  
Jong-Seok Lee ◽  
Se-Hoon Oh

As environmental regulations have been strengthened worldwide since the Paris Climate Agreement, the automobile industry is shifting its production paradigm to focus on eco-friendly vehicles such as electric vehicles and hydrogen-battery vehicles. Governments are banning fossil fuel vehicles by law and expanding the introduction of green vehicles. The energy efficiency of electric vehicles that use a limited power source called batteries depends on the driving environment. Applying a two-speed transmission to an electric vehicle can optimize average speed and performance efficiency at low speeds, and achieve maximum speed with minimal torque at high speeds. In this study, a two-speed transmission for an electric vehicle has been developed, to be used in a compact electric vehicle. This utilizes a planetary gear of a total of three pairs, made of a single module which was intended to enable two-speed. The ring gear was removed, and the carrier was used in common. When shifting, the energy used for the speed change is small, due to the use of the simple method of fixing the sun gear of each stage. Each gear was designed by calculating bending strength and surface durability, using JGMA standards, to secure stability. The safety factor of the gears used in the transmission is as follows: all gears have been verified for safety with a bending strength of 1.2 or higher and a surface pressure strength of 1.1 or higher. The design validity of the transmission was verified by calculating the gear meshing ratio and the reference efficiency of the gear. The transmission to be developed through the research results of this paper has a simple and compact structure optimized for electric vehicles, and has reduced shift shock. In addition, energy can be used more efficiently, which will help improve fuel economy and increase drive range.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2471 ◽  
Author(s):  
Daniel Flor ◽  
Danilo Pena ◽  
Luan Pena ◽  
Vicente A. de Sousa ◽  
Allan Martins

Vehicular acoustic noise evaluations are a concern of researchers due to health and comfort effects on humans and are fundamental for anyone interested in mitigating audio noise. This paper focuses on the evaluation of the noise level inside a vehicle by using statistical tools. First, an experimental setup was developed with microphones and a microcomputer located strategically on the car’s panel, and measurements were carried out with different conditions such as car window position, rain, traffic, and car speed. Regression analysis was performed to evaluate the similarity of the noise level from those conditions. Thus, we were able to discuss the relevance of the variables that contribute to the noise level inside a car. Finally, our results revealed that the car speed is strongly correlated to interior noise levels, suggesting the most relevant noise sources are in the vehicle itself.


Author(s):  
Masao Nakagawa ◽  
Dai Nishida ◽  
Deepak Sah ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama

Planetary gear trains (PGTs) are widely used in various machines owing to their many advantages. However, they suffer from problems of noise and vibration due to the structural complexity and giving rise to substantial noise, vibration, and harshness with respect to both structures and human users. In this report, the sound level from PGTs is measured in an anechoic chamber based on human aural characteristic, and basic features of sound are investigated. Gear noise is generated by the vibration force due to varying gear tooth stiffness and the vibration force due to tooth surface error, or transmission error (TE). Dynamic TE is considered to be increased because of internal and external meshing. The vibration force due to tooth surface error can be ignored owing to almost perfect tooth surface. A vibration force due to varying tooth stiffness could be a major factor.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2638
Author(s):  
Xianhua Chen ◽  
Xingkai Yang ◽  
Ming J. Zuo ◽  
Zhigang Tian

Planetary gearbox systems are critical mechanical components in heavy machinery such as wind turbines. They may suffer from various failure modes, due to the harsh working environment. Dynamic modeling is a useful method to support early fault detection for enhancing reliability and reducing maintenance costs. However, reported studies have not considered the sun gear tooth crack and bearing clearance simultaneously to analyze their combined effect on vibration characteristics of planetary gearboxes. In this paper, a dynamic model is developed for planetary gearboxes considering the clearance of planet gear, sun gear, and carrier bearings, as well as sun gear tooth crack levels. Bearing forces are calculated considering bearing clearance, and the dynamic model equations are updated accordingly. The results reveal that the combination of bearing clearances can affect the vibration response with sun gear tooth crack by increasing the kurtosis. It is found that the effect of planet gear bearing clearance is very small, while the sun gear and carrier bearing clearance has clear impact on the vibration responses. These findings suggest that the incorporation of bearing clearance is important for planetary gearbox dynamic modeling.


2018 ◽  
Vol 6 (6) ◽  
pp. 495-501 ◽  
Author(s):  
Guanjin Li ◽  
Wenyi Liu ◽  
Xiuping Su

Sign in / Sign up

Export Citation Format

Share Document