In-Situ Characterization of Nano-Structures Fabricated by Focused Ion Beam (FIB) and Nano Particle Deposition System (NPDS)

Author(s):  
Hyun-Taek Lee ◽  
Chung-Soo Kim ◽  
Hae-Sung Yoon ◽  
Ki-Hwan Jang ◽  
Jung-Oh Choi ◽  
...  

Nano particle deposition system (NPDS) had been developed for the creation of micro/nano structures with multimaterials in order to develop the micro/nano devices on the basis of specific localized surface on the multilayer. However, micro structures fabricated by NPDS show different mechanical properties when it compared to bulk material because of its porous and uneven deposition structure. To achieve reasonable mechanical properties of the structure fabricated by nanoscale 3D printing system, it requires in-situ mechanical property test method. Herein, a new approach for in-situ nanomechanical characterization system using microforce sensor and nanomanipulator installed in focused ion beam system. In this research, experimental setup for mechanical characterization was developed and mechanical property test was done in Focused Ion Beam (FIB) system. The specimen was fabricated by FIB milling process, then manipulation and compression processes are operated by this characterization system with real time imaging. The test was done for silver microstructures fabricated by NPDS and results show weaker hardness and smaller young’s modulus than bulk material.

Author(s):  
Jiyoung Chang ◽  
Jongbaeg Kim ◽  
Byung-Kwon Min ◽  
Sang Jo Lee ◽  
Liwei Lin

Schemes for in-situ resonant frequency tuning of nano scale vibrating structures using Focused Ion Beam (FIB) sputtering and FIB-Chemical Vapor Deposition (CVD) are presented. This approach introduces precisely controlled permanent increase or decrease of resonant frequencies on processed nano structures, enabling the frequency adjustment when the desired resonant frequency is higher or lower than the actual frequency of the fabricated resonators. The vibration is induced by electrostatic force between resonator and stator using 0~10V AC input and all the processes including fabrication of nanostructure, electrostatic actuation, vibration observation and frequency tuning in either higher or lower direction were successfully conducted in single FIB chamber. The range of the frequency tuned from 600kHz initial resonant frequency is +6kHz with -1.9μm and -65kHz with +1.1μm length change of the nano-resonator respectively. Structural FEM analysis result is compared with the experimental result.


2014 ◽  
Vol 20 (6) ◽  
pp. 1826-1834
Author(s):  
Enne Faber ◽  
Willem P. Vellinga ◽  
Jeff T.M. De Hosson

AbstractThis paper investigates the adhesive interface in a polymer/metal (polyethylene terephthalate/steel) laminate that is subjected to uniaxial strain. Cross-sections perpendicular to such interfaces were created with a focused ion beam and imaged with scanning electron microscopy during straining in the electron microscope. During in situ straining, glide steps formed by the steel caused traction at the interface and initiated crazes in the polyethylene terephthalate (PET). These crazes readily propagated along the free surface of the PET layer. Similar crazing has not been previously encountered in laminates that were pre-strained or in numerical calculations. The impact of focused ion beam treatments on mechanical properties of the polymer/metal laminate system was therefore investigated. It was found that mechanical properties such as toughness of PET are dramatically influenced by focused ion beam etching. It was also found that this change in mechanical properties has a different effect on the pre-strained and in situ strained samples.


2000 ◽  
Vol 636 ◽  
Author(s):  
Hiroshi Fudouzi ◽  
Mikihiko Kobayashi ◽  
Norio Shinya

AbstractThis paper describes a new technique to fabricate two-dimensional microstructures assembled with nano-sized particles. The nano-sized particles attract a lot of attention because of their unique properties compared to bulk materials. Micro- and nano- structures assembled with nano-sized particles have potential applications in electronic, optical and biochemical fields. The Self-Assembled Monolayer (SAM) film patterning is one of the methods to assemble the nano-sized particles. We have proposed a new method to assemble nano-sized particles on a substrate using an electric field generated by an electrified pattern. In this study, following our methods titanium oxide (TiO2, diam.=21nm) particles were patterned on an n-type (100) silicon substrate having an oxidized layer. The particle deposition on the substrates was carried out using a colloidal suspension process and an aerosol process.


Author(s):  
Jian-Shing Luo ◽  
Hsiu Ting Lee

Abstract Several methods are used to invert samples 180 deg in a dual beam focused ion beam (FIB) system for backside milling by a specific in-situ lift out system or stages. However, most of those methods occupied too much time on FIB systems or requires a specific in-situ lift out system. This paper provides a novel transmission electron microscopy (TEM) sample preparation method to eliminate the curtain effect completely by a combination of backside milling and sample dicing with low cost and less FIB time. The procedures of the TEM pre-thinned sample preparation method using a combination of sample dicing and backside milling are described step by step. From the analysis results, the method has applied successfully to eliminate the curtain effect of dual beam FIB TEM samples for both random and site specific addresses.


Author(s):  
Romaneh Jalilian ◽  
David Mudd ◽  
Neil Torrez ◽  
Jose Rivera ◽  
Mehdi M. Yazdanpanah ◽  
...  

Abstract The sample preparation for transmission electron microscope can be done using a method known as "lift-out". This paper demonstrates a method of using a silver-gallium nanoneedle array for a quicker sharpening process of tungsten probes with better sample viewing, covering the fabrication steps and performance of needle-tipped probes for lift-out process. First, an array of high aspect ratio silver-gallium nanoneedles was fabricated and coated to improve their conductivity and strength. Then, the nanoneedles were welded to a regular tungsten probe in the focused ion beam system at the desired angle, and used as a sharp probe for lift-out. The paper demonstrates the superior mechanical properties of crystalline silver-gallium metallic nanoneedles. Finally, a weldless lift-out process is described whereby a nano-fork gripper was fabricated by attaching two nanoneedles to a tungsten probe.


Author(s):  
H. Lorenz ◽  
C. Engel

Abstract Due to the continuously decreasing cell size of DRAMs and concomitantly diminishing thickness of some insulating layers new failure mechanisms appear which until now had no significance for the cell function. For example high resistance leakage paths between closely spaced conductors can lead to retention problems. These are hard to detect by electrical characterization in a memory tester because the involved currents are in the range of pA. To analyze these failures we exploit the very sensitive passive voltage contrast of the Focused Ion Beam Microscope (FIB). The voltage contrast can further be enhanced by in-situ FIB preparations to obtain detailed information about the failure mechanism. The first part of this paper describes a method to detect a leakage path between a borderless contact on n-diffusion and an adjacent floating gate by passive voltage contrast achieved after FIB circuit modification. In the second part we will demonstrate the localization of a DRAM trench dielectric breakdown. In this case the FIB passive voltage contrast technique is not limited to the localization of the failing trench. We can also obtain the depth of the leakage path by selective insitu etching with XeF2 stopped immediately after a voltage contrast change.


Micron ◽  
2017 ◽  
Vol 101 ◽  
pp. 8-15 ◽  
Author(s):  
Daniele De Felicis ◽  
Muhammad Zeeshan Mughal ◽  
Edoardo Bemporad

Author(s):  
A. H. S. Iyer ◽  
M. H. Colliander

Abstract Background The trend in miniaturisation of structural components and continuous development of more advanced crystal plasticity models point towards the need for understanding cyclic properties of engineering materials at the microscale. Though the technology of focused ion beam milling enables the preparation of micron-sized samples for mechanical testing using nanoindenters, much of the focus has been on monotonic testing since the limited 1D motion of nanoindenters imposes restrictions on both sample preparation and cyclic testing. Objective/Methods In this work, we present an approach for cyclic microcantilever bending using a micromanipulator setup having three degrees of freedom, thereby offering more flexibility. Results The method has been demonstrated and validated by cyclic bending of Alloy 718plus microcantilevers prepared on a bulk specimen. The experiments reveal that this method is reliable and produces results that are comparable to a nanoindenter setup. Conclusions Due to the flexibility of the method, it offers straightforward testing of cantilevers manufactured at arbitrary position on bulk samples with fully reversed plastic deformation. Specific microstructural features, e.g., selected orientations, grain boundaries, phase boundaries etc., can therefore be easily targeted.


Sign in / Sign up

Export Citation Format

Share Document