Modeling and Analysis of a Ball and Beam System Including Impacts and Dry Friction

Author(s):  
Diego Colón ◽  
Átila Madureira Bueno ◽  
Ivando S. Diniz ◽  
Jose M. Balthazar

The Ball and Beam system is a common didactical plant that presents a complex nonlinear dynamics. This comes from the fact that the ball rolls over the beam, which rotates around its barycenter. In order to deduce the system’s equations, composition of movement must be applied, using a non-inertial reference frame attached to the beam. In the Literature, a common hypothesis is to suppose that the ball rolls without slipping. If a viscous friction is supposed to be present, a simpler situation is obtained, where Lagrangean mechanics can be applied, and no contact force is known. Even then, the dynamics is very nonlinear. However, this model does not include all the relevant phenomena, such as ball’s slipping at higher beam’s inclination angles, dry friction between the ball and the beam, and impacts between: 1) the ball and the ends of the beam, and 2) the beam and the base (ground). These additions to the model impose the necessity to calculate, in a simulation setting, the contact forces, and the Newton’s approach to determine the system’s equations becomes more convenient. Also, discontinuities in the model are introduced, and the simpler mathematical object for model such systems are the differential inclusion systems. In this work, we deduce the Ball and Beam differential inclusion system, including dry friction and the impact between the ball and beam. We also present simulation results for the corresponding differential inclusion system in a typical situation.

2020 ◽  
Vol 39 (14) ◽  
pp. 1686-1705
Author(s):  
Xiaowei Shan ◽  
Lionel Birglen

Soft grasping of random objects in unstructured environments has been a research topic of predilection both in academia and in industry because of its complexity but great practical relevance. However, accurate modeling of soft hands and fingers has proven a difficult challenge to tackle. Focusing on this issue, this article presents a detailed mathematical modeling and performance analysis of parallel grippers equipped with soft fingers taking advantage of the fin ray effect (FRE). The FRE, based on biomimetic principles, is most commonly found in the design of grasping soft fingers, but despite their popularity, finding a convenient model to assess the grasp capabilities of these fingers is challenging. This article aims at solving this issue by providing an analytic tool to better understand and ultimately design this type of soft fingers. First, a kinetostatic model of a general multi-crossbeam finger is established. This model will allow for a fast yet accurate estimation of the contact forces generated when the fingers grasp an arbitrarily shaped object. The obtained mathematical model will be subsequently validated by numerically to ensure the estimations of the overall grasp strength and individual contact forces are indeed accurate. Physical experiments conducted with 3D-printed fingers of the most common architecture of FRE fingers will also be presented and shown to support the proposed model. Finally, the impact of the relative stiffness between different areas of the fingers will be evaluated to provide insight into further refinement and optimization of these fingers.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Dorian Cojocaru ◽  
Dan B. Marghitu

The impact between a rotating link and a solid flat surface is considered. For the impact, we consider three distinct periods: elastic period, elastoplastic period, and restitution period. A Hertzian contact force is considered for the elastic period. Nonlinear contact forces developed from finite element analysis are used for the remaining two phases. The tangential effect is taken into account considering a friction force that combines the Coulomb dry friction model and a viscous friction function of velocity. Simulations results are obtained for different friction parameters. An experimental setup was designed to measure the contact time during impact. The experimental and simulation results are compared for different lengths of the link.


2008 ◽  
Vol 36 (3) ◽  
pp. 211-226 ◽  
Author(s):  
F. Liu ◽  
M. P. F. Sutcliffe ◽  
W. R. Graham

Abstract In an effort to understand the dynamic hub forces on road vehicles, an advanced free-rolling tire-model is being developed in which the tread blocks and tire belt are modeled separately. This paper presents the interim results for the tread block modeling. The finite element code ABAQUS/Explicit is used to predict the contact forces on the tread blocks based on a linear viscoelastic material model. Special attention is paid to investigating the forces on the tread blocks during the impact and release motions. A pressure and slip-rate-dependent frictional law is applied in the analysis. A simplified numerical model is also proposed where the tread blocks are discretized into linear viscoelastic spring elements. The results from both models are validated via experiments in a high-speed rolling test rig and found to be in good agreement.


2021 ◽  
Vol 11 (2) ◽  
pp. 466
Author(s):  
Włodzimierz Kęska ◽  
Jacek Marcinkiewicz ◽  
Łukasz Gierz ◽  
Żaneta Staszak ◽  
Jarosław Selech ◽  
...  

The continuous development of computer technology has made it applicable in many scientific fields, including research into a wide range of processes in agricultural machines. It allows the simulation of very complex physical phenomena, including grain motion. A recently discovered discrete element method (DEM) is used for this purpose. It involves direct integration of equations of grain system motion under the action of various forces, the most important of which are contact forces. The method’s accuracy depends mainly on precisely developed mathematical models of contacts. The creation of such models requires empirical validation, an experiment that investigates the course of contact forces at the moment of the impact of the grains. To achieve this, specialised test stations equipped with force and speed sensors were developed. The correct selection of testing equipment and interpretation of results play a decisive role in this type of research. This paper focuses on the evaluation of the force sensor dynamic properties’ influence on the measurement accuracy of the course of the plant grain impact forces against a stiff surface. The issue was examined using the computer simulation method. A proprietary computer software with the main calculation module and data input procedures, which presents results in a graphic form, was used for calculations. From the simulation, graphs of the contact force and force signal from the sensor were obtained. This helped to clearly indicate the essence of the correct selection of parameters used in the tests of sensors, which should be characterised by high resonance frequency.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 660
Author(s):  
Dariusz Jędrzejczyk ◽  
Elżbieta Szatkowska

The analyzed topic refers to the wear resistance and friction coefficient changes resulting from heat treatment (HT) of a hot-dip zinc coating deposited on steel. The aim of research was to evaluate the coating behavior during dry friction after HT as a result of microstructure changes and increase the coating hardness. The HT parameters should be determined by taking into consideration, on the one hand, coating wear resistance and, on the other hand, its anticorrosion properties. A hot-dip zinc coating was deposited in industrial conditions (according EN ISO 10684) on disc-shaped samples and the chosen bolts. The achieved results were assessed on the basis of tribological tests (T11 pin-on-disc tester, Schatz®Analyse device, Sindelfingen, Germany), microscopic observations (with the use of optical and scanning microscopy), EDS (point and linear) analysis, and microhardness measurements. It is proved that properly applied HT of a hot-dip zinc coating results in changes in the coating’s microstructure, hardness, friction coefficient, and wear resistance.


Author(s):  
P. Flores ◽  
J. Ambro´sio ◽  
J. C. P. Claro ◽  
H. M. Lankarani

This work deals with a methodology to assess the influence of the spherical clearance joints in spatial multibody systems. The methodology is based on the Cartesian coordinates, being the dynamics of the joint elements modeled as impacting bodies and controlled by contact forces. The impacts and contacts are described by a continuous contact force model that accounts for geometric and mechanical characteristics of the contacting surfaces. The contact force is evaluated as function of the elastic pseudo-penetration between the impacting bodies, coupled with a nonlinear viscous-elastic factor representing the energy dissipation during the impact process. A spatial four bar mechanism is used as an illustrative example and some numerical results are presented, being the efficiency of the developed methodology discussed in the process of their presentation. The results obtained show that the inclusion of clearance joints in the modelization of spatial multibody systems significantly influences the prediction of components’ position and drastically increases the peaks in acceleration and reaction moments at the joints. Moreover, the system’s response clearly tends to be nonperiodic when a clearance joint is included in the simulation.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Nenad Muškinja ◽  
Matej Rižnar

We examined a design approach for a PID controller for a nonlinear ball and beam system. Main objective of our research was to establish a nonmodel based control system, which would also not be dependent on a specific ball and beam hardware setup. The proposed PID controller setup is based on a cascaded configuration of an inner PID ball velocity control loop and an outer proportional ball position control loop. The effectiveness of the proposed controller setup was first presented in simulation environment in comparison to a hardware dependent PD cascaded controller, along with a more comprehensive study on possible design approach for optimal PID controller parameters in relation to main functionality of the controller setup. Experimental real time control results were then obtained on a laboratory setup of the ball and beam system on which PD cascaded controller could not be applied without parallel system model processing.


2021 ◽  
Author(s):  
Domenico Tommasino ◽  
Matteo Bottin ◽  
Giulio Cipriani ◽  
Alberto Doria ◽  
Giulio Rosati

Abstract In robotics the risk of collisions is present both in industrial applications and in remote handling. If a collision occurs, the impact may damage both the robot and external equipment, which may result in successive imprecise robot tasks or line stops, reducing robot efficiency. As a result, appropriate collision avoidance algorithms should be used or, if it is not possible, the robot must be able to react to impacts reducing the contact forces. For this purpose, this paper focuses on the development of a special end-effector that can withstand impacts and is able to protect the robot from impulsive forces. The novel end-effector is based on a bi-stable mechanism that decouples the dynamics of the end-effector from the dynamics of the robot. The intrinsically non-linear behavior of the end-effector is investigated with the aid of numerical simulations. The effect of design parameters and the operating conditions are analyzed and the interaction between the functioning of the bi-stable mechanism and the control system is studied. In particular, the effect of the mechanism in different scenarios characterized by different robot velocities is shown. Results of numerical simulations assess the validity of the proposed end-effector, which can lead to large reductions in impact forces.


Sign in / Sign up

Export Citation Format

Share Document