Dynamic Simulation of a Tripod Based in Boltzmann-Hamel Equations

Author(s):  
Oscar Altuzarra ◽  
Francisco Campa Gomez ◽  
Constantino Roldan-Paraponiaris ◽  
Charles Pinto

In this paper, authors show the results of performance simulation of a 3PRS lower-mobility parallel manipulator actuated by electronic devices. The simulation includes a mechatronic model of the actuators, the dynamic response of the mechanism found using the Boltzmann-Hamel equations, and a model of the control. The dynamics of the actuators is modelled using two transfer functions found by means of a test based identification method. Authors find the explicit Dynamic equations needed for simulation using analytical mechanics. Lagrange equations are convenient and systematic in open-loop serial kinematic chains. However, for closed-loop mechanisms are cumbersome, even with the help of Lagrange multipliers. Moreover, if spatial rotations are involved, generalized coordinates are very much coupled in the expressions of Lagrange functions to be differentiated. Boltzmann-Hamel equations come to help in this regard. By using Simulink, authors could evaluate the stability of the control and the bandwidth of the manipulator.

Author(s):  
Yingbai Xie ◽  
Xiuzhi Huang ◽  
Liyong Lun ◽  
Ganglei Sun

The linear compressor is driven by a linear motor. Because it has no crankcase, the piston motion and its control of the linear compressor are differing from that of the conventional reciprocating compressor. For a moving coil linear compressor, mechanical and electromagnetism system are modeled. The open loop and closed loop transfer functions of the system in no-load condition are obtained derived from these equations. The Matlab software is applied to analyze the stability, time domain and frequency domain of the system. Simulation results show that the linear compressor is stable, but the overshoot is relative high, which must be adjusted. This conclusion will be benefit for the design of the idling start of the moving coil linear compressor.


Author(s):  
Fesenko, H.

Purpose. Increasing the uniformity of distribution of mineral fertilizers and other bulk materials due to the stability of their feed from the body to the spreading working bodies using the top feeder. Methods. The following methods are used to achieve this aim: the method of comparing the differences between individual groups of fertilizers, the method of analyzing the properties of a new technical system, the method of functional inventiveness, and the methods of theoretical and analytical mechanics. Results. The traction body of the conveyor of the upper feed of the body fat body machine for mineral fertilizers and other bulk materials was substantiated and the relationship between the height of its scrapers and the distance between them was established, as well as the nature of the mineral fertilizer pressure on the curvilinear wall of the body. In addition, the design of the advanced body fertilizer spreader is justified, which ensures a stable flow of fertilizers from the body due to the improvement of the top feeder. Conclusions. Because of the conducted researches, the advantages of machines equipped with top feeder are found. They create the conditions for the forced feeding mineral fertilizers and other loose materials from the container to the distribution bodies, which is a prerequisite for their evenness on the surface. With this, the imperfection of known machines with the top feeder constrains their introduction into agricultural production. On this account, a more thoroughly constructed solution of the body feeder of the top feed is substantiated, in which the conveyor provides a stable supply of fertilizers from the body with reduced energy consumption during operation. Keywords: analysis, feed, upper device, conveyor, stability, fertilizers, flow ability, body.


1987 ◽  
Vol 31 (6) ◽  
pp. 648-651 ◽  
Author(s):  
James G. Connelly ◽  
Christopher D. Wickens ◽  
Gavan Lintern ◽  
Kelly Harwood

This study used elements of attention theory as a methodological basis to decompose a complex training task in order to improve training efficiency. The complex task was a microcomputer flight simulation where subjects were required to control the stability of their own helicopter while acquiring and engaging enemy helicopters in a threat environment. Subjects were divided into whole-task, part-task, and part/open loop adaptive task groups in a transfer of training paradigm. The effect of reducing mental workload at the early stages of learning was examined with respect to the degree that subordinate elements of the complex task could be automated through practice of consistent, learnable stimulus-response relationships. Results revealed trends suggesting the benefit of isolating consistently mapped sub-tasks for part-task training and the presence of a time-sharing skill over and above the skill required for the separate subtasks.


2010 ◽  
Vol 121-122 ◽  
pp. 860-865
Author(s):  
Xue Zhen Chen

This paper searched open loop stability on hybrid synchronous motor which is made of a permanent magnet part and a reluctance part, there is important influence for the ratio k, the fraction length of the permanent magnet part, and the displaced angle α, the between the two part d-axis, the small-signal mathematics model was derived based on d-q reference frame, and optimized the appropriate k and α value considering the stability and the harmonic distortion factor (THD), The simulation results show that the model is correct.


2016 ◽  
Vol 22 (2) ◽  
pp. 158-175 ◽  
Author(s):  
Erick Pruchnicki

The displacement field in rods can be approximated by using a Taylor–Young expansion in transverse dimension of the rod. These involve that the highest-order term of shear is of second order in the transverse dimension of the rod. Then we show that transverse shearing energy is removed by the fourth-order truncation of the potential energy and so we revisit the model presented by Pruchnicki. Then we consider the sixth-order truncation of the potential which includes transverse shearing and transverse normal stress energies. For these two models we show that the potential energies satisfy the stability condition of Legendre–Hadamard which is necessary for the existence of a minimizer and then we give the Euler–Lagrange equations and the natural boundary conditions associated with these potential energies. For the sake of simplicity we consider that the cross-section of the rod has double symmetry axes.


Author(s):  
L. T. Wang

Abstract A new method of formulating the generalized equations of motion for simple-closed (single loop) spatial linkages is presented in this paper. This method is based on the generalized principle of D’Alembert and the use of the transformation Jacobian matrices. The number of the differential equations of motion is minimized by performing the method of generalized coordinate partitioning in the joint space. Based on this formulation, a computational algorithm for computer simulation the dynamic motions of the linkage is developed, this algorithm is not only numerically stable but also fully exploits the efficient recursive computational schemes developed earlier for open kinematic chains. Two numerical examples are presented to demonstrate the stability and efficiency of the algorithm.


2019 ◽  
Vol 19 (02) ◽  
pp. 1950013 ◽  
Author(s):  
A. S. Mirabbashi ◽  
A. Mazidi ◽  
M. M. Jalili

In this paper, both experimental and analytical flutter analyses are conducted for a typical 5-degree of freedon (5DOF) wing section carrying a flexibly mounted unbalanced engine. The wing flexibility is simulated by two torsional and longitudinal springs at the wing elastic axis. One flap is attached to the wing section by a torsion spring. Also, the engine is connected to the wing by two elastic joints. Each joint is simulated by a spring and damper unit to bring the model close to reality. Both the torsional and longitudinal motions of the engine are considered in the aeroelastic governing equations derived from the Lagrange equations. Also, Peter’s finite state model is used to simulate the aerodynamic loads on the wing. Effects of various engine parameters such as position, connection stiffness, mass, thrust and unbalanced force on the flutter of the wing are investigated. The results show that the aeroelastic stability region is limited by increasing the engine mass, pylon length, engine thrust and unbalanced force. Furthermore, increasing the damping and stiffness coefficients of the engine connection enlarges the stability domain.


Author(s):  
Zahra Shahbazi ◽  
Horea T. Ilies¸ ◽  
Kazem Kazerounian

Proteins are nature’s nano-robots in the form of functional molecular components of living cells. The function of these natural nano-robots often requires conformational transitions between two or more native conformations that are made possible by the intrinsic mobility of the proteins. Understanding these transitions is essential to the understanding of how proteins function, as well as to the ability to design and manipulate protein-based nano-mechanical systems [1]. Modeling protein molecules as kinematic chains provides the foundation for developing powerful approaches to the design, manipulation and fabrication of peptide based molecules and devices. Nevertheless, these models possess a high number of degrees of freedom (DOF) with considerable computational implications. On the other hand, real protein molecules appear to exhibits a much lower mobility during the folding process than what is suggested by existing kinematic models. The key contributor to the lower mobility of real proteins is the formation of Hydrogen bonds during the folding process.


2006 ◽  
Vol 129 (2) ◽  
pp. 230-238 ◽  
Author(s):  
Naohiko Takahashi ◽  
Hiroyuki Fujiwara ◽  
Osami Matsushita ◽  
Makoto Ito ◽  
Yasuo Fukushima

In active magnetic bearing (AMB) systems, stability is the most important factor for reliable operation. Rotor positions in radial direction are regulated by four-axis control in AMB, i.e., a radial system is to be treated as a multi-input multioutput (MIMO) system. One of the general indices representing the stability of a MIMO system is “maximum singular value” of a sensitivity function matrix, which needs full matrix elements for calculation. On the other hand, ISO 14839-3 employs “maximum gain” of the diagonal elements. In this concept, each control axis is considered as an independent single-input single-output (SISO) system and thus the stability indices can be determined with just four sensitivity functions. This paper discusses the stability indices using sensitivity functions as SISO systems with parallel/conical mode treatment and/or side-by-side treatment, and as a MIMO system with using maximum singular value; the paper also highlights the differences among these approaches. In addition, a conversion from usual x∕y axis form to forward/backward form is proposed, and the stability is evaluated in its converted form. For experimental demonstration, a test rig diverted from a high-speed compressor was used. The transfer functions were measured by exciting the control circuits with swept signals at rotor standstill and at its 30,000 revolutions/min rotational speed. For stability limit evaluation, the control loop gains were increased in one case, and in another case phase lags were inserted in the controller to lead the system close to unstable intentionally. In this experiment, the side-by-side assessment, which conforms to the ISO standard, indicates the least sensitive results, but the difference from the other assessments are not so great as to lead to inadequate evaluations. Converting the transfer functions to the forward/backward form decouples the mixed peaks due to gyroscopic effect in bode plot at rotation and gives much closer assessment to maximum singular value assessment. If large phase lags are inserted into the controller, the second bending mode is destabilized, but the sensitivity functions do not catch this instability. The ISO standard can be used practically in determining the stability of the AMB system, nevertheless it must be borne in mind that the sensitivity functions do not always highlight the instability in bending modes.


2020 ◽  
Vol 23 (1) ◽  
pp. 183-210 ◽  
Author(s):  
Shuo Zhang ◽  
Lu Liu ◽  
Dingyu Xue ◽  
YangQuan Chen

AbstractThe elementary fractional-order models are the extension of first and second order models which have been widely used in various engineering fields. Some important properties of commensurate or a few particular kinds of non-commensurate elementary fractional-order transfer functions have already been discussed in the existing studies. However, most of them are only available for one particular kind elementary fractional-order system. In this paper, the stability and resonance analysis of a general kind non-commensurate elementary fractional-order system is presented. The commensurate-order restriction is fully released. Firstly, based on Nyquist’s Theorem, the stability conditions are explored in details under different conditions, namely different combinations of pseudo-damping (ζ) factor values and order parameters. Then, resonance conditions are established in terms of frequency behaviors. At last, an example is given to show the stable and resonant regions of the studied systems.


Sign in / Sign up

Export Citation Format

Share Document