Geometry of Modular Origami Metamaterials

Author(s):  
Yunfang Yang ◽  
Zhong You

Modular origami is a type of origami where multiple pieces of paper are folded into modules, and these modules are then interlocked with each other forming an assembly. Some of them turn out to be capable of large scale shape transformation, making them ideal to create metamaterials with tuned mechanical properties. In this paper, we carry out a fundamental research on 2D modular origami assemblies using mathematical tiling and patterns and mechanism analysis, which leads to the development of various patterns consisting of interconnected quadrilateral modules. Due to the existence of 4R linkages within the patterns, they become transformable, and can be compactly packaged. Moreover, by the introduction of paired modules, we are able to adjust the expansion ratio of the pattern. Additionally, we also show that transformable patterns with higher mobility exist for other polygonal modules. Our findings provide more design flexibility to achieve truly programmable metamaterials.

2018 ◽  
Vol 10 (2) ◽  
Author(s):  
Yunfang Yang ◽  
Zhong You

Modular origami is a type of origami where multiple pieces of paper are folded into modules, and these modules are then interlocked with each other forming an assembly. Some of them turn out to be capable of large-scale shape transformation, making them ideal to create metamaterials with tuned mechanical properties. In this paper, we carry out a fundamental research on two-dimensional (2D) transformable assemblies inspired by modular origami. Using mathematical tiling and patterns and mechanism analysis, we are able to develop various structures consisting of interconnected quadrilateral modules. Due to the existence of 4R linkages within the assemblies, they become transformable, and can be compactly packaged. Moreover, by the introduction of paired modules, we are able to adjust the expansion ratio of the pattern. Moreover, we also show that transformable patterns with higher mobility exist for other polygonal modules. The design flexibility among these structures makes them ideal to be used for creation of truly programmable metamaterials.


Author(s):  
Yashwant Koli ◽  
N Yuvaraj ◽  
Aravindan Sivanandam ◽  
Vipin

Nowadays, rapid prototyping is an emerging trend that is followed by industries and auto sector on a large scale which produces intricate geometrical shapes for industrial applications. The wire arc additive manufacturing (WAAM) technique produces large scale industrial products which having intricate geometrical shapes, which is fabricated by layer by layer metal deposition. In this paper, the CMT technique is used to fabricate single-walled WAAM samples. CMT has a high deposition rate, lower thermal heat input and high cladding efficiency characteristics. Humping is a common defect encountered in the WAAM method which not only deteriorates the bead geometry/weld aesthetics but also limits the positional capability in the process. Humping defect also plays a vital role in the reduction of hardness and tensile strength of the fabricated WAAM sample. The humping defect can be controlled by using low heat input parameters which ultimately improves the mechanical properties of WAAM samples. Two types of path planning directions namely uni-directional and bi-directional are adopted in this paper. Results show that the optimum WAAM sample can be achieved by adopting a bi-directional strategy and operating with lower heat input process parameters. This avoids both material wastage and humping defect of the fabricated samples.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 176
Author(s):  
Iñigo Aramendia ◽  
Unai Fernandez-Gamiz ◽  
Adrian Martinez-San-Vicente ◽  
Ekaitz Zulueta ◽  
Jose Manuel Lopez-Guede

Large-scale energy storage systems (ESS) are nowadays growing in popularity due to the increase in the energy production by renewable energy sources, which in general have a random intermittent nature. Currently, several redox flow batteries have been presented as an alternative of the classical ESS; the scalability, design flexibility and long life cycle of the vanadium redox flow battery (VRFB) have made it to stand out. In a VRFB cell, which consists of two electrodes and an ion exchange membrane, the electrolyte flows through the electrodes where the electrochemical reactions take place. Computational Fluid Dynamics (CFD) simulations are a very powerful tool to develop feasible numerical models to enhance the performance and lifetime of VRFBs. This review aims to present and discuss the numerical models developed in this field and, particularly, to analyze different types of flow fields and patterns that can be found in the literature. The numerical studies presented in this review are a helpful tool to evaluate several key parameters important to optimize the energy systems based on redox flow technologies.


2021 ◽  
Vol 7 (1) ◽  
pp. 47-54
Author(s):  
Jinjie Lin ◽  
Yong Li ◽  
Sijia Hu ◽  
Qianyi Liu ◽  
Jing Zhang ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1094
Author(s):  
Bastian Klose ◽  
Daniel Kremer ◽  
Merve Aksit ◽  
Kasper P. van der Zwan ◽  
Klaus Kreger ◽  
...  

Polystyrene foams have become more and more important owing to their lightweight potential and their insulation properties. Progress in this field is expected to be realized by foams featuring a microcellular morphology. However, large-scale processing of low-density foams with a closed-cell structure and volume expansion ratio of larger than 10, exhibiting a homogenous morphology with a mean cell size of approximately 10 µm, remains challenging. Here, we report on a series of 4,4′-diphenylmethane substituted bisamides, which we refer to as kinked bisamides, acting as efficient supramolecular foam cell nucleating agents for polystyrene. Self-assembly experiments from solution showed that these bisamides form supramolecular fibrillary or ribbon-like nanoobjects. These kinked bisamides can be dissolved at elevated temperatures in a large concentration range, forming dispersed nano-objects upon cooling. Batch foaming experiments using 1.0 wt.% of a selected kinked bisamide revealed that the mean cell size can be as low as 3.5 µm. To demonstrate the applicability of kinked bisamides in a high-throughput continuous foam process, we performed foam extrusion. Using 0.5 wt.% of a kinked bisamide yielded polymer foams with a foam density of 71 kg/m3 and a homogeneous microcellular morphology with cell sizes of ≈10 µm, which is two orders of magnitude lower compared to the neat polystyrene reference foam with a comparable foam density.


Author(s):  
Chang Liu ◽  
Rui Cheng ◽  
Jiazhuang Guo ◽  
Ge Li ◽  
He Li ◽  
...  

2021 ◽  
Vol 7 (2) ◽  
pp. 38
Author(s):  
Nectarios Vidakis ◽  
Markos Petousis ◽  
Lazaros Tzounis ◽  
Emmanuel Velidakis ◽  
Nikolaos Mountakis ◽  
...  

In this study, nanocomposites with polyamide 12 (PA12) as the polymer matrix and multiwalled carbon nanotubes (MWCNTs) and carbon black (CB) at different loadings (2.5, 5.0, and 10.0 wt.%) as fillers, were produced in 3D printing filament form by melt mixing extrusion process. The filament was then used to build specimens with the fused filament fabrication (FFF) three-dimensional (3D) printing process. The aim was to produce by FFF 3D printing, electrically conductive and thermoelectric functional specimens with enhanced mechanical properties. All nanocomposites’ samples were electrically conductive at filler loadings above the electrical percolation threshold. The highest thermoelectric performance was obtained for the PA12/CNT nanocomposite at 10.0 wt.%. The static tensile and flexural mechanical properties, as well as the Charpy’s impact and Vickers microhardness, were determined. The highest improvement in mechanical properties was observed for the PA12/CNT nanocomposites at 5.0 wt.% filler loading. The fracture mechanisms were identified by fractographic analyses of scanning electron microscopy (SEM) images acquired from fractured surfaces of tensile tested specimens. The nanocomposites produced could find a variety of applications such as; 3D-printed organic thermoelectric materials for plausible large-scale thermal energy harvesting applications, resistors for flexible circuitry, and piezoresistive sensors for strain sensing.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 173
Author(s):  
Alessandro Pistone ◽  
Cristina Scolaro ◽  
Annamaria Visco

The accumulation of marine organisms on ship hulls, such as microorganisms, barnacles, and seaweeds, represents a global problem for maritime industries, with both economic and environmental costs. The use of biocide-containing paints poses a serious threat to marine ecosystems, affecting both target and non-target organisms driving science and technology towards non-biocidal solutions based on physico-chemical and materials properties of coatings. The review reports recent development of hydrophobic protective coatings in terms of mechanical properties, correlated with the wet ability features. The attention is focused mainly on coatings based on siloxane and epoxy resin due to the wide application fields of such systems in the marine industry. Polyurethane and other systems have been considered as well. These coatings for anti-fouling applications needs to be both long-term mechanically stable, perfectly adherent with the metallic/composite substrate, and capable to detach/destroy the fouling organism. Prospects should focus on developing even “greener” antifouling coatings solutions. These coatings should also be readily addressable to industrial scale-up for large-scale product distribution, possibly at a reasonable cost.


Sign in / Sign up

Export Citation Format

Share Document