Creating Robust Passive Multi-Loop Wearable Hand Devices

Author(s):  
Nina Robson ◽  
Bin Yun Chen ◽  
Jong-Seob Won ◽  
Gim Song Soh

Abstract This paper describes a process for assessing multi-loop wearable devices that use a common slider to passively drive the exo-fingers for the physical training of people with limited hand mobility. Each finger design, except for the thumb, is based on an RRR serial chain, termed backbone, constrained into a multi-loop eight-bar slider mechanism using two RR constraints. The thumb utilizes a planar RR backbone chain constrained into a parallel four bar slider. During the physical task acquisition experiments, the subject’s tip finger trajectories are captured using an optical motion capture and its dimensions are set such that they match each of the fingers kinematics as closely as possible. The dimensional synthesis procedure can yield a variety of design candidates that fulfill the desired fingertip precision grasping trajectory. Once it is ensured that the synthesized fingertip motion is close to the physiological fingertip grasping trajectories, performance assessment criteria related to user-device interference and natural joint angle movement are taken into account. After the most preferred design for each finger is chosen, minor modifications related to substituting the backbone chain with the wearer’s limb to provide the skeletal structure of the customized passive device are made. To illustrate the proposed technique, the development of a 3D prototype model of a passively actuated Closed Loop Articulated Wearable (CLAW) hand is presented. The CLAW hand performance with respect to wear-ability and robustness was assessed. Preliminary test results with healthy subjects show that the CLAW hand is easy to operate and able to guide the user’s fingers without causing any discomfort, ensuring both, precision and power grasping in a natural manner. The lack of electrical actuators and sensors simplifies the control, resulting in a lightweight and cost-effective solution for grasping of a variety of objects with different sizes. This work establishes the importance of incorporating novel design candidate assessment techniques, based on human finger kinematic models, within the conceptual design level that can assist in finding robust design candidates with naturalistic joint motion.

Author(s):  
Shramana Ghosh ◽  
Nina Robson ◽  
J. M. McCarthy

The paper presents the design of a lower leg orthotic device based on dimensional synthesis of multi-loop six-bar linkages. The wearable device is comprised of a 2R serial chain, termed the backbone, sized according to the wearer’s limb anthropometric dimensions. The paper is a result of our current efforts in proposing a systematic process for the development of 3D printed customized assistive devices for patients with reduced limb mobility, based on anthropometric data and physiological task. To design the wearable device, the physiological task of the limb is obtained using an optical motion capture system and its dimensions are set such that it matched the lower leg kinematics as closely as possible. As a next step a six-bar linkage is synthesized and ensured that its motion is as close as possible to the physiological task. Next, the 2R backbone is replaced by the wearer’s limb to provide the skeletal structure for the multi-loop wearable device. During the final stage of the process the 2R backbone is relocated to parallel the human’s limb on one side, providing support and stability. The designed device can be secured to the thigh of the user to guide the lower leg without causing any discomfort and to ensure a natural physiological gait trajectory. This results in orthotic device for assisting people with lower leg injuries with compact size and better wearability.


2013 ◽  
Vol 365-366 ◽  
pp. 805-811
Author(s):  
Jing Jing Yu ◽  
Jin Wu Qian ◽  
Lin Yong Shen ◽  
Ya Nan Zhang

Continuous Passive Motion (CPM) has been confirmed as an effective clinical therapy for finger neurological rehabilitation. In this study a finger rehabilitation training robot is designed based on CPM rehabilitation theory. This paper presents the design and simulation of the finger rehabilitation robot. Based on the finger structure and movement trajectory analysis, OPTOTRAK CERTUS motion capture system is used to acquire trajectory parameters of normal human finger movement. Atlas method is employed to accomplish mechanism dimensional synthesis of the finger rehabilitation training robot. The feasibility of the mechanism is verified using a modeling and simulation method with SIMULINK software.


2020 ◽  
Vol 10 (7) ◽  
pp. 2619 ◽  
Author(s):  
Giuseppe Carbone ◽  
Eike Christian Gerding ◽  
Burkard Corves ◽  
Daniele Cafolla ◽  
Matteo Russo ◽  
...  

This paper presents a novel exoskeleton mechanism for finger motion assistance. The exoskeleton is designed as a serial 2-degrees-of-freedom wearable mechanism that is able to guide human finger motion. The design process starts by analyzing the motion of healthy human fingers by video motion tracking. The experimental data are used to obtain the kinematics of a human finger. Then, a graphic/geometric synthesis procedure is implemented for achieving the dimensional synthesis of the proposed novel 2 degrees of freedom linkage mechanism for the finger exoskeleton. The proposed linkage mechanism can drive the three finger phalanxes by using two independent actuators that are both installed on the back of the hand palm. A prototype is designed based on the proposed design by using additive manufacturing. Results of numerical simulations and experimental tests are reported and discussed to prove the feasibility and the operational effectiveness of the proposed design solution that can assist a wide range of finger motions with proper adaptability to a variety of human fingers.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4861 ◽  
Author(s):  
Sumit Agrawal ◽  
Christopher Fadden ◽  
Ajay Dangi ◽  
Xinyi Yang ◽  
Hussain Albahrani ◽  
...  

Photoacoustic computed tomography (PACT) has been widely explored for non-ionizing functional and molecular imaging of humans and small animals. In order for light to penetrate deep inside tissue, a bulky and high-cost tunable laser is typically used. Light-emitting diodes (LEDs) have recently emerged as cost-effective and portable alternative illumination sources for photoacoustic imaging. In this study, we have developed a portable, low-cost, five-dimensional (x, y, z, t, λ ) PACT system using multi-wavelength LED excitation to enable similar functional and molecular imaging capabilities as standard tunable lasers. Four LED arrays and a linear ultrasound transducer detector array are housed in a hollow cylindrical geometry that rotates 360 degrees to allow multiple projections through the subject of interest placed inside the cylinder. The structural, functional, and molecular imaging capabilities of the LED–PACT system are validated using various tissue-mimicking phantom studies. The axial, lateral, and elevational resolutions of the system at 2.3 cm depth are estimated as 0.12 mm, 0.3 mm, and 2.1 mm, respectively. Spectrally unmixed photoacoustic contrasts from tubes filled with oxy- and deoxy-hemoglobin, indocyanine green, methylene blue, and melanin molecules demonstrate the multispectral molecular imaging capabilities of the system. Human-finger-mimicking phantoms made of a bone and blood tubes show structural and functional oxygen saturation imaging capabilities. Together, these results demonstrate the potential of the proposed LED-based, low-cost, portable PACT system for pre-clinical and clinical applications.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6933
Author(s):  
Georgios Giarmatzis ◽  
Evangelia I. Zacharaki ◽  
Konstantinos Moustakas

Conventional biomechanical modelling approaches involve the solution of large systems of equations that encode the complex mathematical representation of human motion and skeletal structure. To improve stability and computational speed, being a common bottleneck in current approaches, we apply machine learning to train surrogate models and to predict in near real-time, previously calculated medial and lateral knee contact forces (KCFs) of 54 young and elderly participants during treadmill walking in a speed range of 3 to 7 km/h. Predictions are obtained by fusing optical motion capture and musculoskeletal modeling-derived kinematic and force variables, into regression models using artificial neural networks (ANNs) and support vector regression (SVR). Training schemes included either data from all subjects (LeaveTrialsOut) or only from a portion of them (LeaveSubjectsOut), in combination with inclusion of ground reaction forces (GRFs) in the dataset or not. Results identify ANNs as the best-performing predictor of KCFs, both in terms of Pearson R (0.89–0.98 for LeaveTrialsOut and 0.45–0.85 for LeaveSubjectsOut) and percentage normalized root mean square error (0.67–2.35 for LeaveTrialsOut and 1.6–5.39 for LeaveSubjectsOut). When GRFs were omitted from the dataset, no substantial decrease in prediction power of both models was observed. Our findings showcase the strength of ANNs to predict simultaneously multi-component KCF during walking at different speeds—even in the absence of GRFs—particularly applicable in real-time applications that make use of knee loading conditions to guide and treat patients.


Robotica ◽  
2014 ◽  
Vol 32 (8) ◽  
pp. 1363-1382 ◽  
Author(s):  
Ismail Hakan Ertas ◽  
Elif Hocaoglu ◽  
Volkan Patoglu

SUMMARYWe present AssistOn-Finger, a novel under-actuated active exoskeleton for robot-assisted tendon therapy of human fingers. The primary use for the exoskeleton is to assist flexion/extension motions of a finger within its full range, while decreasing voluntary muscle contractions helping to keep the tendon tension levels to stay within acceptable limits, avoiding gap formation or rupture of the suture. The device can also be employed to administer range of motion (RoM)/strengthening exercises. AssistOn-Fingeris designed to be passively back-driveable, can cover the whole RoM of patients, and can do so in a natural and coordinated manner. In particular, the device employs human finger as an integral part of its kinematics and when coupled to a human operator, the parallel kinematic structure of exoskeleton supports three independent degrees of freedom, dictated by the kinematics of the human finger. Automatically aligning its joint axes to match finger joint axes, AssistOn-Fingercan guarantee ergonomy and comfort throughout the therapy. The self-aligning feature also significantly shortens the setup time required to attach the patient to the exoskeleton. We present the kinematic type selection for the exoskeleton to satisfy the design requirements for tendon therapy applications, detail optimal dimensional synthesis of the device considering trade-offs between multiple design criteria and discuss implementation details of the exoskeleton. We also present feasibility studies conducted on healthy volunteers and provide statistical evidence on the efficacy of exoskeleton driven exercises in keeping the average muscle recruitment and the maximum tendon tension levels as low as human guided therapies.


Author(s):  
Tomoaki Utsunomiya ◽  
Hidekazu Matsukuma ◽  
Shintaro Minoura ◽  
Kiyohiko Ko ◽  
Hideki Hamamura ◽  
...  

This study aims at development of a cost-effective, floating offshore wind turbine. The prototype model considered herein is composed of (1) 2-MW horizontal-axis wind turbine (HAWT) of downwind type, (2) steel monotower with 55-m hub height above sea level, (3) steel-prestressed concrete (PC) hybrid SPAR-type foundation with 70-m draft, and (4) catenary mooring system using anchor chains. In order to demonstrate the feasibility of the concept, an at-sea experiment using a 1/10-scale model of the prototype has been made. The demonstrative experiment includes (1) construction of the hybrid SPAR foundation using PC and steel, the same as the prototype; (2) dry-towing and installation to the at-sea site at 30-m distance from the quay of the Sasebo shipbuilding yard; (3) generating electric power using a 1 kW HAWT; and (4) removal from the site. During the at-sea experiment, wind speed, wind direction, tidal height, wave height, motion of the SPAR, tension in a mooring chain, and strains in the tower and the SPAR foundation have been measured. Motion of the SPAR has been numerically simulated and compared with the measured values, where basically good agreement is observed.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Takashi Watanabe ◽  
Hiroki Saito ◽  
Eri Koike ◽  
Kazuki Nitta

The purpose of this study is to develop wearable sensor system for gait evaluation using gyroscopes and accelerometers for application to rehabilitation, healthcare and so on. In this paper, simultaneous measurement of joint angles of lower limbs and stride length was tested with a prototype of wearable sensor system. The system measured the joint angles using the Kalman filter. Signals from the sensor attached on the foot were used in the stride length estimation detecting foot movement automatically. Joint angles of the lower limbs were measured with stable and reasonable accuracy compared to those values measured with optical motion measurement system with healthy subjects. It was expected that the stride length measurement with the wearable sensor system would be practical by realizing more stable measurement accuracy. Sensor attachment position was suggested not to affect significantly measurement of slow and normal speed movements in a test with the rigid body model. Joint angle patterns measured in 10 m walking with a healthy subject were similar to common patterns. High correlation between joint angles at some characteristic points and stride velocity were also found adequately. These results suggested that the wireless wearable inertial sensor system could detect characteristics of gait.


1994 ◽  
Vol 116 (4) ◽  
pp. 389-395 ◽  
Author(s):  
M. Perl ◽  
R. Arone´

The basic concept of a new experimental method for measuring the level of autofrettage in thick-walled cylinders as well as a comprehensive numerical simulation were presented in Part I of this paper. A pilot test is conducted herein on a 105-mm autofrettage gun barrel to validate the proposed procedure. First, a preliminary test is performed to determine the minimum thickness required for a ring, cut from the barrel, in order to be a representative, valid, and free of edge-effect specimen. Then, the main experiment is conducted consisting of the gradual release of the residual stress field due to autofrettage prevailing in the ring specimen. An array of seven equally spaced, identical, radial notches is progressively cut at the inner surface of the ring, while the released hoop stress is continuously measured by a strain gage-based computerized data acquisition system. The process is accomplished by a detailed numerical simulation enabling a qualitative and quantitative monitoring of the procedure. The proposed experimental procedure is found to be feasible, reliable, and cost-effective, and to yield accurate results.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 427
Author(s):  
Javier Cuadrado ◽  
Florian Michaud ◽  
Urbano Lugrís ◽  
Manuel Pérez Soto

Optical motion capture is currently the most popular method for acquiring motion data in biomechanical applications. However, it presents a number of problems that make the process difficult and inefficient, such as marker occlusions and unwanted reflections. In addition, the obtained trajectories must be numerically differentiated twice in time in order to get the accelerations. Since the trajectories are normally noisy, they need to be filtered first, and the selection of the optimal amount of filtering is not trivial. In this work, an extended Kalman filter (EKF) that manages marker occlusions and undesired reflections in a robust way is presented. A preliminary test with inertial measurement units (IMUs) is carried out to determine their local reference frames. Then, the gait analysis of a healthy subject is performed using optical markers and IMUs simultaneously. The filtering parameters used in the optical motion capture process are tuned in order to achieve good correlation between the obtained accelerations and those measured by the IMUs. The results show that the EKF provides a robust and efficient method for optical system-based motion analysis, and that the availability of accelerations measured by inertial sensors can be very helpful for the adjustment of the filters.


Sign in / Sign up

Export Citation Format

Share Document