A Computational Approach Using Surface-Based Cohesive Behavior to Study Tissue Cutting With Rotation in Vacuum-Assisted Biopsy

Author(s):  
Guan-Jhong Lan ◽  
Chi-Lun Lin

Vacuum-assisted biopsy (VAB) is a widely used technology to sample lesion tissue for breast cancer diagnosis. The technology is designed to retrieve tougher and larger breast tissue samples. The majority of VAB tools utilize a so-called rotational cutting method, in which the cutting needle simultaneously rotates and translates to produce both tangential and normal forces at the cutting surface of the tissue. The introduction of the tangential force can significantly reduce the cutting force measured in the axial direction. As a result, higher quality of tissue samples can be obtained as the samples are less deformed while being removed. The slice-push ratio, i.e. the ratio of the speed component parallel to the cutting edge to the speed component perpendicular to the cutting edge, was previously found to be the most important factor to influence the cutting force [1]. However, these studies only investigated the cases in low translational cutting speeds in a small-scale experiment. In this paper, we present a finite element (FE) model based on surface-based cohesive behavior, which simulates the rotational cutting method used in VAB to predict the progressive damage and the cutting force of soft tissue phantoms. The model is validated using the experimental data provided in the previous study [1]. The validated model will allow us to explore more cutting conditions, such as higher translational speeds, larger range of slice-push ratio, and tissue properties. The model can also be used to optimize design parameters of current VAB needles and to evaluate new VAB needle designs.

2014 ◽  
Vol 955-959 ◽  
pp. 3393-3399 ◽  
Author(s):  
Wei Zheng ◽  
Yan Ming Yang ◽  
Yun Long Li ◽  
Jian Qiu Zheng

The process technique and design parameters of project of Solar Ozonic Ecological Sewage Treatment Plant (short for SOESTP) which consists of anaerobic reactor, horizontal subsurface flow (HSSF) constructed wetlands(CWs) and the combination of solar power and ozone disinfection are described, the paper further examines the removal efficiency for treating rural domestic sewage, running expense and recycling ability of product water. The results show that the average percentage removal values of CODcr,BOD5,SS,TN,NH3-N,TP range from 95.6% to 98.0%, 96.0% to 98.7%, 93.1% to 96.1%, 97.0% to 98.9%, 96.9% to 99.5%, 98.2% to 99.6%, respectively, the reduction of fecal coliform (FC) reaches 99.9%, the effluent quality meets the first level A criteria specified in Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant(GB18918-2002). The running cost of SOESTP is 0.063yuan/ m3, saves much more than traditional sewage treatment, and the ozone water obtained from the reservoir will be an ideal choice for disinfection .The system has characteristics of easy manipulation, low operating cost, achieving advanced water, energy conservation and environment protection, is thought to be very suitable for use as the promotion of rural small - scale sewage treatment.


Author(s):  
Chaoqin Zhai ◽  
David H. Archer ◽  
John C. Fischer

This paper presents the development of an equation based model to simulate the combined heat and mass transfer in the desiccant wheels. The performance model is one dimensional in the axial direction. It applies a lumped formulation in the thickness direction of the desiccant and the substrate. The boundary conditions of this problem represent the inlet outside/process and building exhaust/regeneration air conditions as well as the adiabatic condition of the two ends of the desiccant composite. The solutions of this model are iterated until the wheel reaches periodic steady state operation. The modeling results are obtained as the changes of the outside/process and building exhaust/regeneration air conditions along the wheel depth and the wheel rotation. This performance model relates the wheel’s design parameters, such as the wheel dimension, the channel size and the desiccant properties, and the wheel’s operating variables, such as the rotary speed and the regeneration air flowrate, to its operating performance. The impact of some practical issues, such as wheel purge, residual water in the desiccant and the wheel supporting structure, on the wheel performance has also been investigated.


2018 ◽  
Vol 2018 ◽  
pp. 1-21 ◽  
Author(s):  
Zhenguo Lu ◽  
Lirong Wan ◽  
Qingliang Zeng ◽  
Xin Zhang ◽  
Kuidong Gao

In order to overcome conical pick wear in the traditional rock cutting method, a new cutting method was proposed on account of increasing free surface of the rock. The mechanical model of rock plate bending under concentrated force was established, and the first fracture position was given. The comparison between experimental and numerical results indicated that the numerical method is effective. A computer code LS-DYNA (3D) was employed to study the cutting performance of a conical pick. To study the rock size influenced on the cutting performance, the numerical simulations with different thickness, width, and height of a rock plate was carried out. The numerical simulation with the different cutting parameters of cutting speed, cutting angle, and cutting position influenced on cutting performance was also carried out. The numerical results indicated that the peak force increased with the increasing thickness of rock plate. With the increasing width and height of the rock plate, the peak force decreased and then became stable. Besides, the peak force decreased with the increasing of cutting position lxp/lx. Moreover, the peak force increased and then decreased with the increasing of cutting angle. The cutting speed has nonsignificant influence on the peak force. The strong exponential relationship was obtained between the peak force and cutting position, thickness, height, and width of the rock plate at a confidence level of 0.95. A binomial relationship was observed between the peak force and cutting angel. The cutting force comparison between traditional rock cutting and rock plate cutting indicated that the new cutting method can effectively reduce peak cutting force.


2018 ◽  
Vol 8 (8) ◽  
pp. 1353
Author(s):  
Tao Chen ◽  
Fei Gao ◽  
Suyan Li ◽  
Xianli Liu

Carbon fiber reinforced plastic (CFRP) is typically hard to process, because it is easy for it to generate processing damage such as burrs, tears, delamination, and so on in the machining process. Consequently, this restricts its wide spread application. This paper conducted a comparative experiment on the cutting performance of the two different-structure milling cutters, with a helical staggered edge and a rhombic edge, in milling carbon fiber composites; analyzed the wear morphologies of the two cutting tools; and thus acquired the effect of the tool structure on the machined surface quality and cutting force. The results indicated that in the whole cutting, the rhombic milling cutter with a segmented cutting edge showed better wear resistance and a more stable machined surface quality. It was not until a large area of coating shedding occurred, along with chip clogging, that the surface quality decreased significantly. At the stage of coating wear, the helical staggered milling cutter with an alternately arranged continuous cutting edge showed better machined surface quality, but when the coating fell off, its machined surface quality began to reveal damage such as groove, tear, and fiber pullout. Meanwhile, burrs occurred at the edge and the cutting force obviously increased. By contrast, for the rhombic milling cutter, both the surface roughness and cutting force increased relatively slowly.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3030
Author(s):  
Łukasz Smakosz ◽  
Ireneusz Kreja ◽  
Zbigniew Pozorski

Edgewise compression response of a composite structural insulated panel (CSIP) with magnesium oxide board facings was investigated. The discussed CSIP is a novel multifunctional sandwich panel introduced to the housing industry as a part of the wall, floor, and roof assemblies. The study aims to propose a computational tool for reliable prediction of failure modes of CSIPs subjected to concentric and eccentric axial loads. An advanced numerical model was proposed that includes geometrical and material nonlinearity as well as incorporates the material bimodularity effect to achieve accurate and versatile failure mode prediction capability. Laboratory tests on small-scale CSIP samples of three different slenderness ratios and full-scale panels loaded with three different eccentricity values were carried out, and the test data were compared with numerical results for validation. The finite element (FE) model successfully captured CSIP’s inelastic response in uniaxial compression and when flexural action was introduced by eccentric loads or buckling and predicted all failure modes correctly. The comprehensive validation showed that the proposed approach could be considered a robust and versatile aid in CSIP design.


1999 ◽  
Author(s):  
Armen L. Airikyan

Abstract Everyday practice of cutting process planning requires reliable chipbreacking and this is particularly true when machining difficult-ti-machine materials as austenitic stainless steels. The use of pressed-groove type of chipbreakers prove to provide a partly solution of the problem since their utilization unavoidably leads to increasing cutting force and chipping of the cutting edge. The use of clapped-on chipbreaker seems to solve these problems. However new design and application problem arise. This paper deals with the analysis of these problema and offers a methodology for it resolving. As a result, a new type of a clamped-on chipbreaker has been developed.


Lubricants ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 98 ◽  
Author(s):  
Zhengyang Kang ◽  
Yonghong Fu ◽  
Xingyu Fu ◽  
Martin Jun

In recent years, surface texturing in micro-scale has been attempted on the surface of cutting tools for multiple purposes, e.g., cutting force reduction, prolonging life-span, anti-adhesion, etc. With respect to machinability and performance, micro-groove texture (MGT) has dominated in this field compared to other textured patterns. In this study, a novel volcano-like texture (VLT) was fabricated on the rake face of cemented carbide inserts (WC-Co, YG6) by fiber laser. The following cutting experiment tested the flat, MGT and VLT tools in turning aluminum alloy 6061. The effects of coolant and cutting conditions were investigated. In addition, a validated FEM model was employed to explore the distribution of stress and temperature fields in the tool-chip interface. The initial forming process of adhesion layer on rake face was investigated as well. The results indicated that lower cutting force and less adhesion can be achieved by small scale VLT. This study not only introduced VLT on cutting tools but also revealed its comprehensive performance.


Author(s):  
Riley Orabona Wagner ◽  
Sydney Hsu ◽  
John Nicholas Kick ◽  
Sofia Bisogno ◽  
Camille Heubner ◽  
...  

This paper analyzes the methods utilized by the Princeton University Chapter of Engineers Without Borders to ensure the sustainability of a gravity-fed water system in rural northwestern Peru. While similar small scale development projects consider sustainability in their design process, some do not recognize the importance of an interdisciplinary approach to sustainability. This team, however, is inherently interdisciplinary in nature due to its unique subteam structure, which subsequently affects its approach to sustainability. By examining the technical, social, and financial considerations of the project conducted by the Princeton University Chapter of Engineers Without Borders, this paper argues for a three-pronged approach to sustainability. As can be seen through thoughtful design parameters, strong local partnerships, and strategic financial mechanisms, the project displays promise of future success with regards to sustainability. The main objective of the Princeton Chapter of Engineers Without Borders in this partnership is to ensure that the community has the knowledge, tools, and resources necessary to maintain the water system in a self-sufficient manner at the completion of the chapter’s involvement.


Author(s):  
K. Farhang ◽  
D. Segalman ◽  
M. Starr

This paper shows that the Mindlin problem involving two spheres in contact under the action of oscillating tangential force can lead to the account of static-kinetic friction transition. In Mindlin’s problem two spheres experience partial slip as a result of application of oscillating tangential load. When the problem is extended to multi-sphere contact, i.e. two rough surfaces, the application of tangential oscillating load results in partial slip for some asperity contacts while others experience full slip. Increase in the amplitude of the oscillating tangential force results in more contacts experiencing full slip, thereby decreasing the number of contacts in parial slip. Constitutive relation proposed by Mindlin at small scale, governing asperity interaction, is used to obtain the large scale slip function through a statistical summation of asperity scale events. The slip function establishes the fraction of asperity contact in full slip. The complement of the slip parameter is a fraction of asperities in partial slip. Through slip function it is shown that it is possible to define a slip condition for the entire surface. The derivation of the slip function allows the account of transition between static friction and kinetic friction.


Author(s):  
Tina Unglaube ◽  
Hsiao-Wei D. Chiang

In recent years closed loop supercritical carbon dioxide Brayton cycles have drawn the attention of many researchers as they are characterized by a higher theoretic efficiency and smaller turbomachinery size compared to the conventional steam Rankine cycle for power generation. Currently, first prototypes of this emerging technology are under development and thus small scale sCO2 turbomachinery needs to be developed. However, the design of sCO2 turbines faces several new challenges, such as the very high rotational speed and the high power density. Thus, the eligibility of well-established radial inflow gas turbine design principles has to be reviewed regarding their suitability for sCO2 turbines. Therefore, this work reviews different suggestion for optimum velocity ratios for gas turbines and aims to re-establish it for sCO2 turbines. A mean line design procedure is developed to obtain the geometric dimensions for small scale sCO2 radial inflow turbines. By varying the specific speed and the velocity ratio, different turbine configurations are set up. They are compared numerically by means of CFD analysis to conclude on optimum design parameters with regard to maximum total-to-static efficiency. Six sets of simulations with different specific speeds between 0.15 and 0.52 are set up. Higher specific speeds could not be analyzed, as they require very high rotational speeds (more than 140k RPM) for small scale sCO2 turbines (up to 150kWe). For each set of simulations, the velocity ratio that effectuates maximum efficiency is identified and compared to the optimum parameters recommended for radial inflow turbines using subcritical air as the working fluid. It is found that the values for optimum velocity ratios suggested by Rohlik (1968) are rather far away from the optimum values indicated by the conducted simulations. However, the optimum values suggested by Aungier (2005), although also established for subcritical gas turbines, show an approximate agreement with the simulation results for sCO2 turbines. Though, this agreement should be studied for a wider range of specific speeds and a finer resolution of velocity ratios. Furthermore, for high specific speeds in combination with high velocity ratios, the pressure drop of the designed turbines is too high, so that the outlet pressure is beyond the critical point. For low specific speeds in combination with low velocity ratios, the power output of the designed turbines becomes very small. Geometrically, turbines with low specific speeds and high velocity ratios are characterized by very small blade heights, turbines with high specific speeds and small velocity ratios by very small diameters.


Sign in / Sign up

Export Citation Format

Share Document