Position and Attitude Control by Rotor Tilt and Rotor Speed Synchronization for Single Axis Tilting-Rotor Quadcopter

Author(s):  
Rumit Kumar ◽  
Alireza Nemati ◽  
Manish Kumar ◽  
Kelly Cohen ◽  
Franck Cazaurang

In this paper, the control maneuvering, and performance analysis of a tilting-rotor quadcopter during autonomous flight is presented. Unlike traditional quadcopters, a tilting-rotor quadcopter provides additional actuated controls as the propeller motors are actuated for tilt which can be utilized to improve efficiency of the aerial vehicle during flight. The tilting-rotor quadcopter design is accomplished by using an additional servo motor for each rotor that enables the rotor to tilt about the axis of quadcopter arm. Here, a detailed control strategy has been discussed to use the propeller tilts for position and orientation control during completely autonomous flights of the quadcopter. In conventional quadcopters, the variation in rotational speeds of the four propellers is utilized for maneuvering. This work incorporates use of varying propeller rotational speeds along with tilting of the propellers for maneuvering the quadcopter during flight. A PD controller is developed to achieve various modes of flight and numerical simulation results are presented demonstrating the performance of the controller. Furthermore, the performance of the tilt-rotor design is compared with respect to the conventional quadcopter in the presence of wind disturbances and uncertainties in the system.

2014 ◽  
Vol 903 ◽  
pp. 309-314
Author(s):  
Ismail Mohd Khairuddin ◽  
Anwar P.P.A. Majeed ◽  
Ann Lim ◽  
Mohd Azraai Mohd Razman ◽  
Abdul Aziz Jaafar

This paper outlines the dynamic modelling as well as the attitude and altitude control of a rotary based unmanned aerial vehicle (UAV). A multirotor vertical take-off and landing (VTOL) UAVs, namely Trirotor aircraft is investigated. In essence the the trirotor model consists of three DC motors equipped with three fixed pitch angle rotors without the aid of a swashplate. The mathematical modelling of this multirotor is governed by the Newton-Euler formulation. A classical control algorithm viz. heuristic (Proportional-Integral-Derivative) PID tuning was adopted in the attitude and altitude control of this particular multirotor configuration. It was established from the Simulink simulations that, a PD controller was suffice to control the attitude whilst PID was apt for controlling the altitude of this form of multirotor.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5708
Author(s):  
Ching-Wen Chen ◽  
Hsin-Ai Hung ◽  
Po-Hung Yang ◽  
Teng-Hu Cheng

To track moving targets undergoing unknown translational and rotational motions, a tracking controller is developed for unmanned aerial vehicles (UAVs). The main challenges are to control both the relative position and orientation between the target and the UAV to within desired values, and to guarantee that the generated control input to the UAV is feasible (i.e., below its motion capability). Moreover, the UAV is controlled to ensure that the target always remains within the field of view of the onboard camera. These control objectives were achieved by developing a nonlinear-model predictive controller, in which the future motion of the target is predicted by quadratic programming (QP). Since constraints of the feature vector and the control input are considered when solving the optimal control problem, the control inputs can be bounded and the target can remain inside the image. Three simulations were performed to compare the efficacy and performance of the developed controller with a traditional image-based visual servoing controller.


2020 ◽  
Vol 16 (2) ◽  
pp. 1-9
Author(s):  
Ahmed Abdulkareem ◽  
Basil Jasim ◽  
Safanah Raafat

The gyroscope and accelerometer are the basic sensors used by most Unmanned Aerial Vehicle (UAV) like quadcopter to control itself. In this paper, the fault detection of measured angular and linear states by gyroscope and accelerometer sensors are present. Uncertainties in measurement and physical sensors itself are the main reasons that lead to generate noise and cause the fault in measured states. Most previous solutions are process angular or linear states to improving the performance of quadcopter. Also, in most of the previous solutions, KF and EKF filters are used, which are inefficient in dealing with high nonlinearity systems such as quadcopter. The proposed algorithm is developed by the robust nonlinear filter, Unscented Kalman Filter (UKF), as an angular and linear estimation filter. Simulation results show that the proposed algorithm is efficient to decrease the effect of sensors noise and estimate accurate angular and linear states. Also, improving the stability and performance properties of the quadcopter. In addition, the new algorithm leads to increasing the range of nonlinearity movements that quadcopter can perform it.


2021 ◽  
Vol 11 (1) ◽  
pp. 410
Author(s):  
Yu-Hsien Lin ◽  
Yu-Ting Lin ◽  
Yen-Jun Chiu

On the basis of a full-appendage DARPA SUBOFF model (DTRC model 5470), a scale (λ = 0.535) semi-autonomous submarine free-running model (SFRM) was designed for testing its manoeuvrability and stability in the constrained water. Prior to the experimental tests of the SFRM, a six-degree-of-freedom (6-DOF) manoeuvre model with an autopilot system was developed by using logic operations in MATLAB. The SFRM’s attitude and its trim polygon were presented by coping with the changes in mass and trimming moment. By adopting a series of manoeuvring tests in empty tanks, the performances of the SFRM were introduced in cases of three sailing speeds. In addition, the PD controller was established by considering the simulation results of these manoeuvring tests. The optimal control gains with respect to each manoeuvring test can be calculated by using the PID tuner in MATLAB. Two sets of control gains derived from the optimal characteristics parameters were compared in order to decide on the most appropriate PD controller with the line-of-sight (LOS) guidance algorithm for the SFRM in the autopilot simulation. Eventually, the simulated trajectories and course angles of the SFRM would be illustrated in the post-processor based on the Cinema 4D modelling.


2016 ◽  
Vol 842 ◽  
pp. 251-258 ◽  
Author(s):  
Muhammad Rafi Hadytama ◽  
Rianto A. Sasongko

This paper presents the flight dynamics simulation and analysis of a tilt-rotor vertical takeoff and landing (VTOL) aircraft on transition phase, that is conversion from vertical or hover to horizontal or level flight and vice versa. The model of the aircraft is derived from simplified equations of motion comprising the forces and moments working on the aircraft in the airplane's longitudinal plane of motion. This study focuses on the problem of the airplane's dynamic response during conversion phase, which gives an understanding about the flight characteristics of the vehicle. The understanding about the flight dynamics characteristics is important for the control system design phase. Some simulation results are given to provide better visualization about the behaviour of the tilt-rotor. The simulation results show that both transition phases are quite stable, although an improved stability can give better manoeuver and attitude handling. Improvement on the simulation model is also required to provide more accurate and realistic dynamic response of the vehicle.


2021 ◽  
Vol 13 (4) ◽  
pp. 618
Author(s):  
Zexin Lv ◽  
Fangfang Li ◽  
Xiaolan Qiu ◽  
Chibiao Ding

Polarimetric Interferometric Synthetic Aperture Radar (PolInSAR) can improve interferometric coherence and phase quality, which has good application potential. With the development of the Mini-SAR system, Unmanned Aerial Vehicle borne (UAV-borne) PolInSAR systems became a reality. However, UAV-borne PolInSAR is easily affected by air currents and other factors, which may cause large motion errors and polarization distortion inevitably exists. However, there are few pieces of research which are about motion compensation residual error (MCRE) and polarization distortion effects on PolInSAR. Though the effects of MCRE on Interferometric SAR (InSAR) and polarization distortion on PolInSAR were studied, respectively, these two parts are independently modeled and analyzed. In this paper, a model that simultaneously considers the effects of these two kinds of errors is proposed, and simulation results are given to validate the model. Then, a quantitative analysis based on a real Quadcopter UAV PolInSAR system is performed according to the model, which is valuable for system design and practical application of the UAV-borne PolInSAR system.


2008 ◽  
Vol 45 (01) ◽  
pp. 21-27
Author(s):  
Ming-Chung Fang ◽  
Jhih-Hong Luo

The paper presents a nonlinear hydrodynamic numerical model with multiple-states proportional-derivative (PD) controllers for simulating the ship's tracking in random sea. By way of the rudder operation, the track-keeping ability of the PD controller on the ship is examined using the line-of-sight (LOS) guidance technique. Furthermore, the roll-reduction function using the rudder control is also included in the PD controller. From the present simulation results, the single-input multiple-output (SIMO) heading/roll PD controller including LOS technique developed here indeed works, either for the roll reduction or for track keeping while the ship is maneuvering in waves.


Sign in / Sign up

Export Citation Format

Share Document