An Improved Small-Scale Connected Autonomous Vehicle Platform

Author(s):  
Xihui Wu ◽  
Azim Eskandarian

Abstract This paper introduces a small-scale platform for Connected Autonomous Vehicle (CAV) research that outperforms currently available commercial options in several important benchmarks. The platform is built around a Radio-Control (RC) car utilizing high-performance brushless DC motors allowing the vehicle to reach a maximum speed of 70mph, expanding the possibilities for higher speed research applications. Furthermore, this platform (named after our lab, ASIMcar, for brevity in this article) is equipped with a robust sensor suite and features a state-of-the-art embedded GPU unit for onboard computation, allowing for real-time control over a wide range of challenging operations. For demonstration and comparison, lane keeping as an Advanced Driving Assistance System (ADAS) function was implemented and evaluated using the platform. The commercially available mobile robots are expensive, offer limited capabilities, are harder to modify for various research needs, are more difficult to interface with other robots (cars), and could have proprietary software/hardware features which render them less flexible and less adaptable to specific research needs. The developed ASIMcar overcomes these limitations and provides a highly flexible and cost-effective alternative for automated/autonomous and connected vehicle research and development projects. This paper provides an in-depth description for the development of this car and lists significant features which will assist other researchers to easily and rapidly duplicate them and create a similar platform for their research.

1995 ◽  
Vol 389 ◽  
Author(s):  
K. C. Saraswat ◽  
Y. Chen ◽  
L. Degertekin ◽  
B. T. Khuri-Yakub

ABSTRACTA highly flexible Rapid Thermal Multiprocessing (RTM) reactor is described. This flexibility is the result of several new innovations: a lamp system, an acoustic thermometer and a real-time control system. The new lamp has been optimally designed through the use of a “virtual reactor” methodology to obtain the best possible wafer temperature uniformity. It consists of multiple concentric rings composed of light bulbs with horizontal filaments. Each ring is independently and dynamically controlled providing better control over the spatial and temporal optical flux profile resulting in excellent temperature uniformity over a wide range of process conditions. An acoustic thermometer non-invasively allows complete wafer temperature tomography under all process conditions - a critically important measurement never obtained before. For real-time equipment and process control a model based multivariable control system has been developed. Extensive integration of computers and related technology for specification, communication, execution, monitoring, control, and diagnosis demonstrates the programmability of the RTM.


2021 ◽  
Vol 20 ◽  
pp. 199-206
Author(s):  
Seda Postalcioglu

This study focused on the classification of EEG signal. The study aims to make a classification with fast response and high-performance rate. Thus, it could be possible for real-time control applications as Brain-Computer Interface (BCI) systems. The feature vector is created by Wavelet transform and statistical calculations. It is trained and tested with a neural network. The db4 wavelet is used in the study. Pwelch, skewness, kurtosis, band power, median, standard deviation, min, max, energy, entropy are used to make the wavelet coefficients meaningful. The performance is achieved as 99.414% with the running time of 0.0209 seconds


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3405 ◽  
Author(s):  
Manuel Espinosa-Gavira ◽  
Agustín Agüera-Pérez ◽  
Juan González de la Rosa ◽  
José Palomares-Salas ◽  
José Sierra-Fernández

Very short-term solar forecasts are gaining interest for their application on real-time control of photovoltaic systems. These forecasts are intimately related to the cloud motion that produce variations of the irradiance field on scales of seconds and meters, thus particularly impacting in small photovoltaic systems. Very short-term forecast models must be supported by updated information of the local irradiance field, and solar sensor networks are positioning as the more direct way to obtain these data. The development of solar sensor networks adapted to small-scale systems as microgrids is subject to specific requirements: high updating frequency, high density of measurement points and low investment. This paper proposes a wireless sensor network able to provide snapshots of the irradiance field with an updating frequency of 2 Hz. The network comprised 16 motes regularly distributed over an area of 15 m × 15 m (4 motes × 4 motes, minimum intersensor distance of 5 m). The irradiance values were estimated from illuminance measurements acquired by lux-meters in the network motes. The estimated irradiances were validated with measurements of a secondary standard pyranometer obtaining a mean absolute error of 24.4 W/m 2 and a standard deviation of 36.1 W/m 2 . The network was able to capture the cloud motion and the main features of the irradiance field even with the reduced dimensions of the monitoring area. These results and the low-cost of the measurement devices indicate that this concept of solar sensor networks would be appropriate not only for photovoltaic plants in the range of MW, but also for smaller systems such as the ones installed in microgrids.


Author(s):  
Adam Brian Nulty

Introduction: The current generation of 3D printers are lighter, cheaper, and smaller, making them more accessible to the chairside digital dentist than ever before. 3D printers in general in the industrial and chairside setting can work with various types of materials including, metals, ceramics, and polymers. Evidence presented in many studies show that an ideal material used for dental restorations is characterised by several properties related to durability, cost-effectiveness, and high performance. This review is the second part in a 3D Printing series that looks at the literature on material science and applications for these materials in 3D printing as well as a discussion on the potential further development and future evolution in 3D printing materials. Conclusions: Current materials in 3D printing provide a wide range of possibilities for providing more predictable workflows as well as improving efficiency through less wasteful additive manufacturing in CAD/CAM procedures. Incorporating a 3D printer and a digital workflow into a dental practice is challenging but the wide range of manufacturing options and materials available mean that the dentist should be well prepared to treat patients with a more predictable and cost effective treatment pathway. As 3D printing continues to become a commonplace addition to chair side dental clinics, the evolution of these materials, in particular reinforced PMMA, resin incorporating zirconia and glass reinforced polymers offer increased speed and improved aesthetics that will likely replace subtractive manufacturing milling machines for most procedures.


2016 ◽  
Vol 20 (suppl. 2) ◽  
pp. 393-406 ◽  
Author(s):  
Vlado Porobic ◽  
Evgenije Adzic ◽  
Milan Rapaic

Hardware-in-the-Loop (HIL) emulation is poised to become unsurpassed design tool for development, testing, and optimization of real-time control algorithms for grid connected power electronics converters for distributed generation, active filters and smart grid applications. It is strongly important to examine and test how grid connected converters perform under different operating conditions including grid disturbances and faults. In that sense, converter?s controller is a key component responsible for ensuring safe and high-performance operation. This paper demonstrates an example how ultra-low latency and high fidelity HIL emulator is used to easily, rapidly and exhaustively test and validate standard control strategy for grid connected power electronics converters, without need for expensive hardware prototyping and laboratory test equipment.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Haoxuan Dong ◽  
Weichao Zhuang ◽  
Guodong Yin ◽  
Liwei Xu ◽  
Yan Wang ◽  
...  

AbstractMost researches focus on the regenerative braking system design in vehicle components control and braking torque distribution, few combine the connected vehicle technologies into braking velocity planning. If the braking intention is accessed by the vehicle-to-everything communication, the electric vehicles (EVs) could plan the braking velocity for recovering more vehicle kinetic energy. Therefore, this paper presents an energy-optimal braking strategy (EOBS) to improve the energy efficiency of EVs with the consideration of shared braking intention. First, a double-layer control scheme is formulated. In the upper-layer, an energy-optimal braking problem with accessed braking intention is formulated and solved by the distance-based dynamic programming algorithm, which could derive the energy-optimal braking trajectory. In the lower-layer, the nonlinear time-varying vehicle longitudinal dynamics is transformed to the linear time-varying system, then an efficient model predictive controller is designed and solved by quadratic programming algorithm to track the original energy-optimal braking trajectory while ensuring braking comfort and safety. Several simulations are conducted by jointing MATLAB and CarSim, the results demonstrated the proposed EOBS achieves prominent regeneration energy improvement than the regular constant deceleration braking strategy. Finally, the energy-optimal braking mechanism of EVs is investigated based on the analysis of braking deceleration, battery charging power, and motor efficiency, which could be a guide to real-time control.


2020 ◽  
Vol 10 (24) ◽  
pp. 9017
Author(s):  
Andoni Gonzalez-Arceo ◽  
Maitane Zirion-Martinez de Musitu ◽  
Alain Ulazia ◽  
Mario del Rio ◽  
Oscar Garcia

In this work, a cost-effective wind resource method specifically developed for the ROSEO-BIWT (Building Integrated Wind Turbine) and other Building Integrated Wind Turbines is presented. It predicts the wind speed and direction at the roof of an previously selected building for the past 10 years using reanalysis data and wind measurements taken over a year. To do so, the reanalysis wind speed data is calibrated against the measurements using different kinds of quantile mapping, and the wind direction is predicted using random forest. A mock-up of a building and a BIWT were used in a wind tunnel to perform a small-scale experiment presented here. It showed that energy production is possible and even enhanced over a wide range of attack angles. The energy production estimations made with the best performing kind of calibration achieved an overall relative error of 6.77% across different scenarios.


Author(s):  
Daniel J. Block ◽  
Mark B. Michelotti ◽  
Ramavarapu S. Sreenivas

AbstractThis paper describes the development of an embedded system whose purpose is to control the Novint Falcon as a robot, and to develop a control experiment that demonstrates the use the Novint Falcon as a robotic actuator. The Novint Falcon, which is a PC input device, is “haptic” in the sense that it has a force feedback component. Its relatively low cost compared with other platforms makes it a good candidate for academic application in robot modeling and control. An embedded system is developed to interface with the multiple motors and sensors present in the Novint Falcon, which is subsequently used to control three independent Novint Falcons for a “ballon- plate” experiment. The results show that the device is a viable solution for high-speed actuation of small-scale mechanical systems.


Author(s):  
Daniel Banks ◽  
Jos van ’t Hoff ◽  
Kenneth Doherty

An Oscillating Wave Surge Converter (OWSC) is a Wave Energy Converter (WEC) that consists of a bottom-hinged flap which oscillates due to wave action. Extensive research has been performed on this type of WEC through small scale experimental wave tank tests. One of the key challenges of experimental testing is replicating the characteristics of the Power Take-Off (PTO) system of the equivalent full scale WEC. Many scale models rely on simplified mechanical designs to simulate a PTO system. This can often restrict the experimental research into the influence of PTO design and control strategies of WECs. In order to model PTO systems and control strategies more accurately other tools are needed. This paper describes the design and build of a PLC controlled Force Feedback Dynamometer (FFD) system that enables the testing of more sophisticated control strategies applicable to an OWSC through fast application of a variable PTO damping torque. A PLC system is shown to be a viable control for PTO strategy investigations through velocity triggered damping levels. Examples of both PTO and position control strategies are presented.


Sign in / Sign up

Export Citation Format

Share Document