Gas Bubble Formation in Stagnant and Flowing Mercury

Author(s):  
Mark Wendel ◽  
Ashraf Ibrahim ◽  
David Felde ◽  
Bernard Riemer

The Oak Ridge National Laboratory’s (ORNL) Spallation Neutron Source (SNS) facility uses a liquid mercury target that flows through a stainless steel containment vessel. As the SNS pulsed beam power level is increased, it is expected that the target vessel lifetime could become limited by cavitation damage erosion (CDE). Bubbles produced in mercury at an upwards-oriented vertical gas injector needle were observed with proton radiography (pRad) at the Los Alamos Neutron Science Center (LANSCE). The comparison of volume-of-fluid (VOF) simulation results to the radiographic images reveals some aspects of success and some deficiencies in predicting these high surface tension, highly buoyant, and non-wetting fluid behavior. Although several gas flows were measured with pRad, this paper focuses on the case with a low gas flow rate of 1.66 mg/min (10 sccm) through the 0.2-mm-outer-diameter injector needle. The acoustic waves emitted due to the detachment of the bubble and during subsequent bubble oscillations were also recorded with a microphone, providing a precise measurement of the bubble sizes. When the mercury is also motivated coaxially, the drag on the bubble forces earlier detachment leading to smaller bubble sizes.

Author(s):  
Ashraf Ibrahim ◽  
Mark Wendel ◽  
David Felde ◽  
Bernard Riemer

In this work, we present computational fluid dynamics (CFD) simulations of helium bubble formation and detachment at a submerged needle in stagnant and co-flowing mercury. Since mercury is opaque, visualization of internal gas bubbles was done with proton radiography (pRad) at the Los Alamos Neutron Science Center (LANSCE2). The acoustic waves emitted at the time of detachment and during subsequent oscillations of the bubble were recorded with a microphone. The Volume of Fluid (VOF) model was used to simulate the unsteady two-phase flow of gas injection in mercury. The VOF model is validated by comparing detailed bubble sizes and shapes at various stages of the bubble growth and detachment, with the experimental measurements at 1.66 mg/min helium gas flow rate and different mercury velocities. The experimental and computational results show a two-stage bubble formation in stagnant mercury. The first stage involves growing bubble around the needle, and the second follows as the buoyancy overcomes wall adhesion. The comparison of predicted and measured bubble sizes and shapes at various stages of the bubble growth and detachment is in good agreement.


Author(s):  
Mark Wendel ◽  
Ashraf Abdou ◽  
Bernard Riemer

Pressure waves created in liquid mercury pulsed spallation targets like the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, induce cavitation damage on the target container. The cavitation damage is thought to limit the lifetime of the target for power levels at and above 1 MW. One way to mitigate the damage would be to absorb the pressure pulse energy into a dispersed population of small bubbles, however, creating a bubble size distribution that is sufficiently large and disperse in mercury is challenging due to the high surface tension. Also, measuring the population is complicated by the opacity and the high level of turbulent mixing. Recent advances in bubble diagnostics by batch sampling the mercury made it possible to compare bubble populations for different techniques in a SNS-1/20th scale test loop. More than 10 bubblers were tested and the most productive bubblers were taken for in-beam testing at the Los Alamos Neutron Science Center (LANSCE) WNR user facility. One bubbler design, referred to as the inlet-orifice bubbler, that showed moderate success in creating populations also has an added advantage that it could easily be included in the existing SNS full-scale mercury target configuration. Improvements to the bubbler were planned including a reduction of the nozzle size to choke the gas injection, thus steadying the injected mass flow and allowing multiple nozzles to work off of a common plenum. For the first time, reliable bubble population data are available in the prototypical target geometry and can be compared with populations that mitigated cavitation damage. This paper presents those experimental results.


2020 ◽  
Vol 2 (1) ◽  
pp. 28
Author(s):  
Tommaso Tabanelli ◽  
Paola Blair Vásquez ◽  
Emilia Paone ◽  
Rosario Pietropaolo ◽  
Nikolaos Dimitratos ◽  
...  

Levulinic acid (LA) and its esters (alkyl levulinates) are polyfunctional molecules that can be obtained from lignocellulosic biomass. Herein, the catalytic conversion of methyl and ethyl levulinates into γ-valerolactone (GVL) via catalytic transfer hydrogenation (CTH) by using methanol, ethanol, and 2-propanol as the H-donor/solvent, was investigated under both batch and gas-flow conditions. In particular, high-surface-area, tetragonal zirconia has proven to be a suitable catalyst for this reaction. Isopropanol was found to be the best H-donor under batch conditions, with ethyl levulinate providing the highest yield in GVL. However, long reaction times and high autogenic pressures are needed in order to work in the liquid-phase at high temperature with light alcohols. The reactions occurring under continuous gas-flow conditions, at atmospheric pressure and a relatively low contact time (1 s), were found to be much more efficient, also showing excellent GVL yields when EtOH was used as the reducing agent (GVL yield of around 70% under optimized conditions). The reaction has also been tested using a true bio-ethanol, derived from agricultural waste. These results represent the very first examples of the CTH of alkyl levulinates under continuous gas-flow conditions reported in the literature.


1998 ◽  
Vol 1998 ◽  
pp. 163-163
Author(s):  
K. Hillman

Since the gut environment is generally assumed to be anaerobic, studies of the monogastric intestinal microflora have concentrated on the anaerobic microorganisms. However, the intestinal epithelium constitutes a very high surface area in relation to the volume of the gut contents, and all of this surface area is richly supplied with blood. Appreciable dissolved oxygen concentrations can be detected in the intestines of anaesthetised piglets (Hillman et al, 1993), although this is never detectable in the intestines of killed animals. It was considered important to investigate the persistence of intestinal oxygen after death, in order to determine the accuracy of postmortem measurements of this component of the intestinal environment. This report demonstrates the rapidity of removal of oxygen by porcine colon contents, and indicates that, since the oxygen supply to the intestine stops when the blood circulation stops, accurate measurements of dissolved oxygen can never be made in the intestines of killed animals.Colon contents were obtained from three freshly slaughtered 20 kg piglets and diluted to 20% (w/v) slurries in quarter-strength Ringer's solution (Unipath, UK). The slurries were transferred (25 ml) to 50 ml conical flasks, stirred by magnetic follower (approx 400 rpm) and surrounded by a water jacket to maintain a temperature of 39°C in the vessel contents. A polarographic oxygen electrode was inserted so that the membrane was submerged. Gas flow through the headspace was provided by compressed air and nitrogen, mixed via a pair of needle valves to provide a constant flow rate of 600 ml min-1. Calibration of the system was performed in sterile Ringer's solution using air and oxygen-free nitrogen: calibration was repeated between each experiment.


1973 ◽  
Vol 6 (1) ◽  
pp. 41-46
Author(s):  
B W Imrie ◽  
R A Evans†

A review of some previous studies of pulsating air flow through orifices in pipes is presented. In particular, the authors comment on the significance of inertia effects, the use of Strouhal number as a non-dimensional parameter, and the effect of phase change on time-dependent variables. Attention is drawn to the possible importance of the previously neglected interaction between the effects of orifices as acoustical filters and as meters of pulsating flow. Using complex variable analysis, a theoretical model based on plane acoustic waves yields, for resonance conditions, relationships between frequency, pressure and geometry variables. These were investigated experimentally for a 1-in diameter pipe with different orifice diameters for a range of frequencies up to 180 Hz. The results indicate that accurate derivation of mass flow rates from pressure measurements across an orifice in a pipe depends on taking into account the effects of wave action at all frequencies. This would avoid the rig-dependent limitations to which experimental work on pulsating gas flow through an orifice in a pipe is subject.


Instruments ◽  
2019 ◽  
Vol 3 (2) ◽  
pp. 24 ◽  
Author(s):  
Gerrie Lange

This paper presents a design and working principle for a combined powder-in-gas target. The excellent surface-to-volume ratio of micrometer-sized powder particles injected into a forced carrier-gas-driven environment provides optimal beam power-induced heat relief. Finely dispersed powders can be controlled by a combined pump-driven inward-spiraling gas flow and a fan structure in the center. Known proton-induced nuclear reactions on isotopically enriched materials such as 68Zn and 100Mo were taken into account to be conceptually remodeled as a powder-in-gas target assembly, which was compared to thick target designs. The small irradiation chambers that were modeled in our studies for powdery ‘thick’ targets with a mass thickness (g/cm2) comparable to 68Zn and 100Mo resulted in the need to load 2.5 and 12.6 grams of the isotopically enriched target material, respectively, into a convective 7-bar pressured helium cooling circuit for irradiation, with ion currents and entrance energies of 0.8 (13 MeV) and 2 mA (20 MeV), respectively. Current densities of ~2 μA/mm2 (20 MeV), induces power loads of up to 4 kW/cm2. Moreover, the design work showed that this powder-in-gas target concept could potentially be applied to other radionuclide production routes that involve powdery starting materials. Although the modeling work showed good convective heat relief expectations for micrometer-sized powder, more detailed mathematical investigation on the powder-in-gas target restrictions, electrostatic behavior, and erosion effects during irradiation are required for developing a real prototype assembly.


1993 ◽  
Vol 8 (12) ◽  
pp. 3100-3105 ◽  
Author(s):  
F-M. Kong ◽  
J.D. LeMay ◽  
S.S. Hulsey ◽  
C.T. Alviso ◽  
R.W. Pekala

Carbon aerogels are synthesized via the aqueous polycondensation of resorcinol with formaldehyde, followed by supercritical drying and subsequent pyrolysis at 1050 °C. As a result of their interconnected porosity, ultrafine cell/pore size, and high surface area, carbon aerogels have many potential applications such as supercapacitors, battery electrodes, catalyst supports, and gas filters. The performance of carbon aerogels in the latter two applications depends on the permeability or gas flow conductance in these materials. By measuring the pressure differential across a thin specimen and the nitrogen gas flow rate in the viscous regime, the permeability of carbon aerogels was calculated from equations based upon Darcy's law. Our measurements show that carbon aerogels have permeabilities on the order of 10−12 to 10−10 cm2 over the density range from 0.05–0.44 g/cm3. Like many other aerogel properties, the permeability of carbon aerogels follows a power law relationship with density, reflecting differences in the average mesopore size. Comparing the results from this study with the permeability of silica aerogels reported by other workers, we found that the permeability of aerogels is governed by a simple universal flow equation. This paper discusses the relationship among permeability, pore size, and density in carbon aerogels.


Author(s):  
Mark Wendel ◽  
Ashraf Abdou ◽  
Vincent Paquit ◽  
David Felde ◽  
Bernard Riemer

Pressure waves created in liquid mercury pulsed spallation targets have been shown to create cavitation damage to the target container. One way to mitigate such damage would be to absorb the pressure pulse energy into a dispersed population of small bubbles, however, creating such a population in mercury is difficult due to the high surface tension and particularly the non-wetting behavior of mercury on gas-injection hardware. If the larger injected gas bubbles can be broken down into small bubbles after they are introduced to the flow, then the material interface problem is avoided. Research at the Oak Ridge National Labarotory is underway to develop a technique that has shown potential to provide an adequate population of small-enough bubbles to a flowing spallation target. This technique involves gas injection at an orifice of a geometry that is optimized to the turbulence intensity and pressure distribution of the flow, while avoiding coalescence of gas at injection sites. The most successful geometry thus far can be described as a square-toothed orifice having a 2.5 bar pressure drop in the mercury flow of 8 L/s for one of the target inlet legs. High-speed video and high-resolution photography have been used to quantify the bubble population on the surface of the mercury downstream of the gas injection site. Also, computational fluid dynamics has been used to optimize the dimensions of the toothed orifice based on a RANS computed mean flow including turbulent energies such that the turbulent dissipation and pressure field are best suited for turbulent break-up of the gas bubbles.


2009 ◽  
Vol 640 ◽  
pp. 305-342 ◽  
Author(s):  
F. BAILLOT ◽  
J.-B. BLAISOT ◽  
G. BOISDRON ◽  
C. DUMOUCHEL

Acoustic instabilities with frequencies roughly higher than 1 kHz remain among the most harmful instabilities, able to drastically affect the operation of engines and even leading to the destruction of the combustion chamber. By coupling with resonant transverse modes of the chamber, these pressure fluctuations can lead to a large increase of heat transfer fluctuations, as soon as fluctuations are in phase. To control engine stability, the mechanisms leading to the modulation of the local instantaneous rate of heat release must be understood. The commonly developed global approaches cannot identify the dominant mechanism(s) through which the acoustic oscillation modulates the local instantaneous rate of heat release. Local approaches are being developed based on processes that could be affected by acoustic perturbations. Liquid atomization is one of these processes. In the present paper, the effect of transverse acoustic perturbations on a coaxial air-assisted jet is studied experimentally. Here, five breakup regimes have been identified according to the flow conditions, in the absence of acoustics. The liquid jet is placed either at a pressure anti-node or at a velocity anti-node of an acoustic field. Acoustic levels up to 165 dB are produced. At a pressure anti-node, breakup of the liquid jet is affected by acoustics only if it is assisted by the coaxial gas flow. Effects on the liquid core are mainly due to the unsteady modulation of the annular gas flow induced by the acoustic waves when the mean dynamic pressure of the gas flow is lower than the acoustic pressure amplitude. At a velocity anti-node, local nonlinear radiation pressure effects lead to the flattening of the jet into a liquid sheet. A new criterion, based on an acoustic radiation Bond number, is proposed to predict jet flattening. Once the sheet is formed, it is rapidly atomized by three main phenomena: intrinsic sheet instabilities, Faraday instability and membrane breakup. Globally, this process promotes atomization. The spray is also spatially organized under these conditions: large liquid clusters and droplets with a low ejection velocity can be brought back to the velocity anti-node plane, under the action of the resulting radiation force. These results suggest that in rocket engines, because of the large number of injectors, a spatial redistribution of the spray could occur and lead to inhomogeneous combustion producing high-frequency combustion instabilities.


Membranes ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 8
Author(s):  
Matteo Di Nardo ◽  
Filippo Annoni ◽  
Fuhong Su ◽  
Mirko Belliato ◽  
Roberto Lorusso ◽  
...  

Background: Ultra-protective lung ventilation in acute respiratory distress syndrome or early weaning and/or avoidance of mechanical ventilation in decompensated chronic obstructive pulmonary disease may be facilitated by the use of extracorporeal CO2 removal (ECCO2R). We tested the CO2 removal performance of a new ECCO2R (CO2RESET) device in an experimental animal model. Methods: Three healthy pigs were mechanically ventilated and connected to the CO2RESET device (surface area = 1.8 m2, EUROSETS S.r.l., Medolla, Italy). Respiratory settings were adjusted to induce respiratory acidosis with the adjunct of an external source of pure CO2 (target pre membrane lung venous PCO2 (PpreCO2): 80–120 mmHg). The amount of CO2 removed (VCO2, mL/min) by the membrane lung was assessed directly by the ECCO2R device. Results: Before the initiation of ECCO2R, the median PpreCO2 was 102.50 (95.30–118.20) mmHg. Using fixed incremental steps of the sweep gas flow and maintaining a fixed blood flow of 600 mL/min, VCO2 progressively increased from 0 mL/min (gas flow of 0 mL/min) to 170.00 (160.00–200.00) mL/min at a gas flow of 10 L/min. In particular, a high increase of VCO2 was observed increasing the gas flow from 0 to 2 L/min, then, VCO2 tended to progressively achieve a steady-state for higher gas flows. No animal or pump complications were observed. Conclusions: Medium-flow ECCO2R devices with a blood flow of 600 mL/min and a high surface membrane lung (1.8 m2) provided a high VCO2 using moderate sweep gas flows (i.e., >2 L/min) in an experimental swine models with healthy lungs.


Sign in / Sign up

Export Citation Format

Share Document