A Novel Mathematical Framework for the Venous Valve Leaflet Morphology Extracted From In-Vitro Images Using Machine Learning Assisted Stereological Analysis

2021 ◽  
Author(s):  
V. M. Krushnarao Kotteda ◽  
Herb F. Janssen ◽  
Christopher Harris ◽  
Vinod Kumar

Abstract It has been suggested that stasis (stagnant zones over a period of time, dependent on other factors such as age, or underlying medical conditions, such as cancer or covid19) in the valve pockets may increase the risk of clots due to stasis in combination with other factors increases the risk of Deep Venous Thrombosis (DVT) formation, blood stasis may also result in a decrease in the anticoagulants factors that prevent clots from forming, and if the vein wall is damaged this further increases the risk of clot formation. We propose a proactive framework to predict DVT vulnerability, track progression and provide patient care checkpoints is of clear benefit. The framework is based on leading-edge cloud computing technologies and promises to offer user-friendly Software- & Platform-as-a-Service (SaaS/PaaS) solutions via novel machine learning (ML) algorithm and high fidelity blood flow modeling through the venous network under various valve configurations. In this work, we will present the progress made towards the leaflet morphology extraction from in-vitro images using ML assisted stereological analysis for obtaining a sufficiently accurate representation of morphology. Ultimately, the workflow can be tailored to specific patients. The extracted valve is used to identify red-flag stagnant zones by a detailed, physics-based computational study of the blood flow through the leaflet models.

2021 ◽  
pp. 039139882110130
Author(s):  
Guang-Mao Liu ◽  
Fu-Qing Jiang ◽  
Xiao-Han Yang ◽  
Run-Jie Wei ◽  
Sheng-Shou Hu

Blood flow inside the left ventricle (LV) is a concern for blood pump use and contributes to ventricle suction and thromboembolic events. However, few studies have examined blood flow inside the LV after a blood pump was implanted. In this study, in vitro experiments were conducted to emulate the intraventricular blood flow, such as blood flow velocity, the distribution of streamlines, vorticity and the standard deviation of velocity inside the LV during axial blood pump support. A silicone LV reconstructed from computerized tomography (CT) data of a heart failure patient was incorporated into a mock circulatory loop (MCL) to simulate human systemic circulation. Then, the blood flow inside the ventricle was examined by particle image velocimetry (PIV) equipment. The results showed that the operating conditions of the axial blood pump influenced flow patterns within the LV and areas of potential blood stasis, and the intraventricular swirling flow was altered with blood pump support. The presence of vorticity in the LV from the thoracic aorta to the heart apex can provide thorough washing of the LV cavity. The gradually extending stasis region in the central LV with increasing blood pump support is necessary to reduce the thrombosis potential in the LV.


2007 ◽  
Vol 22 (3) ◽  
pp. 173-184 ◽  
Author(s):  
Lidia I. Malinova ◽  
Georgy V. Simonenko ◽  
Tatyana P. Denisova ◽  
Valery V. Tuchin

2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S198-S198
Author(s):  
Joseph R Meno ◽  
Thien-son K Nguyen ◽  
Elise M Jensen ◽  
G Alexander West ◽  
Leonid Groysman ◽  
...  

1984 ◽  
Vol 52 (02) ◽  
pp. 102-104 ◽  
Author(s):  
L J Nicholson ◽  
J M F Clarke ◽  
R M Pittilo ◽  
S J Machin ◽  
N Woolf

SummaryA technique for harvesting mesothelial cells is described. This entails collagenase digestion of omentum after which the cells can be cultured. The technique has been developed using the rat, but has also been successfully applied to human tissue. Cultured rat mesothelial cells obtained in this way have been examined by scanning electron microscopy. Rat mesothelial cells grown on plastic film have been exposed to blood in an in vitro system using a Baumgartner chamber and have been demonstrated to support blood flow. No adhering platelets were observed on the mesothelial cell surface. Fibroblasts similarily exposed to blood as a control were washed off the plastic.


Author(s):  
Jaynthy C. ◽  
N. Premjanu ◽  
Abhinav Srivastava

Cancer is a major disease with millions of patients diagnosed each year with high mortality around the world. Various studies are still going on to study the further mechanisms and pathways of the cancer cell proliferation. Fucosylation is one of the most important oligosaccharide modifications involved in cancer and inflammation. In cancer development increased core fucosylation by FUT8 play an important role in cell proliferation. Down regulation of FUT8 expression may help cure lung cancer. Therefore the computational study based on the down regulation mechanism of FUT8 was mechanised. Sapota fruit extract, containing 4-Ogalloylchlorogenic acid was used as the inhibitor against FUT-8 as target and docking was performed using in-silico tool, Accelrys Discovery Studio. There were several conformations of the docked result, and conformation 1 showed 80% dock score between the ligand and the target. Further the amino acids of the inhibitor involved in docking were studied using another tool, Ligplot. Thus, in-silico analysis based on drug designing parameters shows that the fruit extract can be studied further using in-vitro techniques to know its pharmacokinetics.


Author(s):  
Н.Н. Петрищев ◽  
Д.Ю. Семенов ◽  
А.Ю. Цибин ◽  
Г.Ю. Юкина ◽  
А.Е. Беркович ◽  
...  

The purpose. In the study we investigated the impact of the partial blood flow shutdown on structural changes in the rabbit vena cava posterior wall after exposure to high-intensity focused ultrasound (HIFU). Methods. Ultrasound Exposure: frequency of 1.65 MHz, the ultrasound intensity in the focus of 13.6 kW/cm, the area of the focal spot 1 mm, continuous ultrasound, exposure for 3 seconds. Results. Immediately after HIFU exposure all layers of the vein wall showed characteristic signs of thermal damage. A week after exposure structural changes in the intima, media and adventitia was minimal in the part of vessel with preserved blood flow, and after 4 weeks the changes were not revealed. A week after HIFU exposure partial endothelium destruction, destruction of myocytes, disorganization and consolidation of collagen fibers of the adventitia were observed in an isolated segment of the vessel, and in 4 weeks endothelium restored and signs of damage in media and adventitia persisted, but were less obvious than in a week after exposure. Conclusion. The shutdown of blood flow after exposure to HIFU promotes persistent changes in the vein wall. Vein compression appears to be necessary for the obliteration of the vessel, when using HIFU-technology.


2020 ◽  
Vol 17 (3) ◽  
pp. 365-375
Author(s):  
Vasyl Kovalishyn ◽  
Diana Hodyna ◽  
Vitaliy O. Sinenko ◽  
Volodymyr Blagodatny ◽  
Ivan Semenyuta ◽  
...  

Background: Tuberculosis (TB) is an infection disease caused by Mycobacterium tuberculosis (Mtb) bacteria. One of the main causes of mortality from TB is the problem of Mtb resistance to known drugs. Objective: The goal of this work is to identify potent small molecule anti-TB agents by machine learning, synthesis and biological evaluation. Methods: The On-line Chemical Database and Modeling Environment (OCHEM) was used to build predictive machine learning models. Seven compounds were synthesized and tested in vitro for their antitubercular activity against H37Rv and resistant Mtb strains. Results: A set of predictive models was built with OCHEM based on a set of previously synthesized isoniazid (INH) derivatives containing a thiazole core and tested against Mtb. The predictive ability of the models was tested by a 5-fold cross-validation, and resulted in balanced accuracies (BA) of 61–78% for the binary classifiers. Test set validation showed that the models could be instrumental in predicting anti- TB activity with a reasonable accuracy (with BA = 67–79 %) within the applicability domain. Seven designed compounds were synthesized and demonstrated activity against both the H37Rv and multidrugresistant (MDR) Mtb strains resistant to rifampicin and isoniazid. According to the acute toxicity evaluation in Daphnia magna neonates, six compounds were classified as moderately toxic (LD50 in the range of 10−100 mg/L) and one as practically harmless (LD50 in the range of 100−1000 mg/L). Conclusion: The newly identified compounds may represent a starting point for further development of therapies against Mtb. The developed models are available online at OCHEM http://ochem.eu/article/11 1066 and can be used to virtually screen for potential compounds with anti-TB activity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gautier Follain ◽  
Naël Osmani ◽  
Valentin Gensbittel ◽  
Nandini Asokan ◽  
Annabel Larnicol ◽  
...  

AbstractTumor progression and metastatic dissemination are driven by cell-intrinsic and biomechanical cues that favor the growth of life-threatening secondary tumors. We recently identified pro-metastatic vascular regions with blood flow profiles that are permissive for the arrest of circulating tumor cells. We have further established that such flow profiles also control endothelial remodeling, which favors extravasation of arrested CTCs. Yet, how shear forces control endothelial remodeling is unknown. In the present work, we aimed at dissecting the cellular and molecular mechanisms driving blood flow-dependent endothelial remodeling. Transcriptomic analysis of endothelial cells revealed that blood flow enhanced VEGFR signaling, among others. Using a combination of in vitro microfluidics and intravital imaging in zebrafish embryos, we now demonstrate that the early flow-driven endothelial response can be prevented upon specific inhibition of VEGFR tyrosine kinase and subsequent signaling. Inhibitory targeting of VEGFRs reduced endothelial remodeling and subsequent metastatic extravasation. These results confirm the importance of VEGFR-dependent endothelial remodeling as a driving force of CTC extravasation and metastatic dissemination. Furthermore, the present work suggests that therapies targeting endothelial remodeling might be a relevant clinical strategy in order to impede metastatic progression.


2021 ◽  
Vol 20 ◽  
pp. 117693512110092
Author(s):  
Abicumaran Uthamacumaran ◽  
Narjara Gonzalez Suarez ◽  
Abdoulaye Baniré Diallo ◽  
Borhane Annabi

Background: Vasculogenic mimicry (VM) is an adaptive biological phenomenon wherein cancer cells spontaneously self-organize into 3-dimensional (3D) branching network structures. This emergent behavior is considered central in promoting an invasive, metastatic, and therapy resistance molecular signature to cancer cells. The quantitative analysis of such complex phenotypic systems could require the use of computational approaches including machine learning algorithms originating from complexity science. Procedures: In vitro 3D VM was performed with SKOV3 and ES2 ovarian cancer cells cultured on Matrigel. Diet-derived catechins disruption of VM was monitored at 24 hours with pictures taken with an inverted microscope. Three computational algorithms for complex feature extraction relevant for 3D VM, including 2D wavelet analysis, fractal dimension, and percolation clustering scores were assessed coupled with machine learning classifiers. Results: These algorithms demonstrated the structure-to-function galloyl moiety impact on VM for each of the gallated catechin tested, and shown applicable in quantifying the drug-mediated structural changes in VM processes. Conclusions: Our study provides evidence of how appropriate 3D VM compression and feature extractors coupled with classification/regression methods could be efficient to study in vitro drug-induced perturbation of complex processes. Such approaches could be exploited in the development and characterization of drugs targeting VM.


Sign in / Sign up

Export Citation Format

Share Document