Results and Experience From GE Energy’s MS5002E Gas Turbine Testing and Evaluation

Author(s):  
Michele D’Ercole ◽  
Giovanni Biffaroni ◽  
Francesco Grifoni ◽  
Francesco Zanobini ◽  
Paolo Pecchi

GE Energy’s new gas turbine, the MS5002E, is a 30 MW-class industrial gas turbine for mechanical drive and power generation applications. The MS5002E (fig.1) is the latest in the Frame5 two-shaft family and, while it retains some features from previous versions, the machine has been specifically designed for low environmental impact and high reliability, in direct response to customer demand for high efficiency and availability [1] & [2]. Main features for the MS5002E are: • 32 MW base load power at ISO inlet conditions (no losses); • 36% thermal efficiency; • 11-stage axial compressor and 17:1 pressure ratio; • reverse flow, six cans, Dry Low NOx (DLN2 technology) combustion system; • two-stages reaction type HP turbine; • two-stages PT leveraged from the LM2500+ HSPT (High Speed Power Turbine); • HP speed operating range 90% (6709rpm) / 101% (7529rpm); • PT speed operating range 50% (2857rpm) / 105% (6000rpm); • exhaust gas temperature (EGT): ∼510°C; • two-baseplates configuration (gas turbine flange-to-flange unit and auxiliary system); • integrated enclosure and baseplate, providing maximum accessibility for maintenance. The design of the MS5002E has been validated through an extensive test program which has included some key-test rigs such as the Rotordynamic Test, the CTV Test (full-scale axial compressor test) and numerous component and full-scale combustion tests in laboratory, conducted in advance of the First Engine to Test (FETT). The MS5002E First Engine to Test was initially started in January 2003 and the validation program has been completed with a full gas turbine teardown, dirty layout (visual and dimensional inspections for each major gas turbine component in as-is conditions) and NDT inspection in June 2004. During engine teardown, disassembly/assembly procedures and tools have been tested and validated. Additional endurance and operability testing is ongoing and will be completed by the end of 2005. The First Engine to Test is a complete equivalent-to-production package including gas turbine, auxiliaries and control system. For the test, a dedicated plateau has been built in Massa, Italy [3]. The gas turbine has been equipped with over 1400 direct measurement points (for a total of more than 2400 direct and indirect measurements) covering the flange-to flange, the package and auxiliaries. All critical-to-quality parameters, such as turbine gas path components temperatures and stresses, combustor temperatures and dynamics, performances and emissions, have been carefully verified by means of redundant instrumentation. This paper presents how the test program has been built on the GE Energy NPI (New Product Introduction) Development Process and how results from tests are fed back to the gas turbine design process. The paper discusses test rig and facilities layout, gas turbine operation experience and lessons learned. Results from the tests and measurements are also discussed.

Author(s):  
Reiner Anton ◽  
Brigitte Heinecke ◽  
Michael Ott ◽  
Rolf Wilkenhoener

The availability and reliability of gas turbine units are critical for success to gas turbine users. Advanced hot gas path components that are used in state-of-the-art gas turbines have to ensure high efficiency, but require advanced technologies for assessment during maintenance inspections in order to decide whether they should be reused or replaced. Furthermore, advanced repair and refurbishment technologies are vital due to the complex nature of such components (e.g., Directionally Solidified (DS) / Single Crystal (SC) materials, thin wall components, new cooling techniques). Advanced repair technologies are essential to allow cost effective refurbishing while maintaining high reliability, to ensure minimum life cycle cost. This paper will discuss some aspects of Siemens development and implementation of advanced technologies for repair and refurbishment. In particular, the following technologies used by Siemens will be addressed: • Weld restoration; • Braze restoration processes; • Coating; • Re-opening of cooling holes.


Author(s):  
Kazuhiko Tanimura ◽  
Naoki Murakami ◽  
Akinori Matsuoka ◽  
Katsuhiko Ishida ◽  
Hiroshi Kato ◽  
...  

The M7A-03 gas turbine, an 8 MW class, single shaft gas turbine, is the latest model of the Kawasaki M7A series. Because of the high thermal efficiency and the high exhaust gas temperature, it is particularly suitable for distributed power generation, cogeneration and combined-cycle applications. About the development of M7A-03 gas turbine, Kawasaki has taken the experience of the existing M7A-01 and M7A-02 series into consideration, as a baseline. Furthermore, the latest technology of aerodynamics and cooling design, already applied to the 18 MW class Kawasaki L20A, released in 2000, has been applied to the M7A-03. Kawasaki has adopted the design concept for achieving reliability within the shortest possible development period by selecting the same fundamental engine specifications of the existing M7A-02 – mass air flow rate, pressure ratio, TIT, etc. However, the M7A-03 has been attaining a thermal efficiency of greater than 2.5 points higher and an output increment of over 660 kW than the M7A-02, by the improvement in aerodynamic performance of the compressor, turbine and exhaust diffuser, improved turbine cooling, and newer seal technology. In addition, the NOx emission of the combustor is low and the M7A-03 has a long service life. These functions make long-term continuous operation possible under various environmental restraints. Lower life cycle costs are achieved by the engine high performance, and the high-reliability resulting from simple structure. The prototype M7A-03 gas-turbine development test started in the spring of 2006 and it has been confirmed that performance, mechanical characteristics, and emissions have achieved the initial design goals.


Author(s):  
Julie McGraw ◽  
Reiner Anton ◽  
Christian Ba¨hr ◽  
Mary Chiozza

In order to promote high efficiency combined with high power output, reliability, and availability, Siemens advanced gas turbines are equipped with state-of-the-art turbine blades and hot gas path parts. These parts embody the latest developments in base materials (single crystal and directionally solidified), as well as complex cooling arrangements (round and shaped holes) and coating systems. A modern gas turbine blade (or other hot gas path part) is a duplex component consisting of base material and coating system. Planned recoating and repair intervals are established as part of the blade design. Advanced repair technologies are essential to allow cost-effective refurbishing while maintaining high reliability. This paper gives an overview of the operating experience and key technologies used to repair these parts.


Author(s):  
Dirk Anding ◽  
Henning Ressing ◽  
Klaus Hörmeyer ◽  
Roland Pisch ◽  
Kai Ziegler

Blade vibrations resulting in alternating stresses are often the critical factor in determining blade life. Indeed, many of the failures experienced by turbomachinery blades occur due to high-cycle fatigue caused by blade vibrations. These vibrations can arise either through self-excited oscillations known as flutter or through aerodynamic forcing of the blades from factors such as periodic wakes from up and/or downstream vanes or unsteady flow phenomena such as compressor surge. The current paper deals with the design and the analytical and experimental verification of the axial blading for a new generation of industrial compressors, a hybrid axial compressor that combines the advantages of conventional industrial compressors — broad operating range and high efficiency — with the advantages of gas turbine compressors — high power-density and high stage pressure ratios. Additionally, the surge robustness of this novel compressor blading has been greatly improved. During the development phase extensive efforts were made to ensure safe operation for future service life. This was achieved by designing blades that will not flutter, do not have high resonance amplitudes throughout their entire operating range and are extremely robust against surge. This strongly increased robustness of the new compressor blading was achieved by the implementation of a “wide-chord” blade design in all rotor blade rows in combination with a proper tuning of resonance frequencies throughout the entire operating range. For the verification of the new blading well-established methods accepted by industry were used such as CFD and FEA. Furthermore, coupling of the two into a method referred to as Fluid Structure Interaction (FSI) was used to more closely investigate the interaction of flow and structural dynamics phenomena. These analytical techniques have been used in conjunction with extensive testing of a scaled test compressor, which was operated at conditions of dynamic similitude (matching of scaled blade vibration frequencies, flow conditions, and Mach number) with full-scale operational conditions. Strain gauges placed on the blades and a state of the art technique known as “tip timing” were used to verify blade vibrations over a wide range of combinations of guide vane positions and rotational speeds. No propensity was found of any of the blades to develop high vibration amplitudes at any of the operating conditions investigated in the rig tests. The comparison of non-linear forced response analyses and the rig test results from strain gauges and tip timing showed close agreement, verifying the analysis techniques used. In conclusion it can be stated that the blade design exhibits a very high level of safety against vibrations within the entire operating range and during surge.


Author(s):  
Geoff Myers ◽  
Dan Tegel ◽  
Markus Feigl ◽  
Fred Setzer ◽  
William Bechtel ◽  
...  

The lean, premixed DLN2.5H combustion system was designed to deliver low NOx emissions from 50% to 100% load in both the Frame 7H (60 Hz) and Frame 9H (50 Hz) heavy-duty industrial gas turbines. The H machines employ steam cooling in the gas turbine, a 23:1 pressure ratio, and are fired at 1440 C (2600 F) to deliver over-all thermal efficiency for the combined-cycle system near 60%. The DLN2.5H combustor is a modular can-type design, with 14 identical chambers used on the 9H machine, and 12 used on the smaller 7H. On a 9H combined-cycle power plant, both the gas turbine and steam turbine are fired using the 14-chamber DLN2.5H combustion system. An extensive full-scale, full-pressure rig test program developed the fuel-staged dry, low emissions combustion system over a period of more than five years. Rig testing required test stand inlet conditions of over 50 kg/s at 500 C and 28 bar, while firing at up to 1440 C, to simulate combustor operation at base load. The combustion test rig simulated gas path geometry from the discharge of the annular tri-passage diffuser through the can-type combustion liner and transition piece, to the inlet of the first stage turbine nozzle. The present paper describes the combustion system, and reports emissions performance and operability results over the gas turbine load and ambient temperature operating range, as measured during the rig test program.


Author(s):  
Elliot Sullivan-Lewis ◽  
Vincent McDonell

Ground based gas turbines are responsible for generating a significant amount of electric power as well as providing mechanical power for a variety of applications. This is due to their high efficiency, high power density, high reliability, and ability to operate on a wide range of fuels. Due to increasingly stringent air quality requirements, stationary power gas turbines have moved to lean-premixed operation. Lean-premixed operation maintains low combustion temperatures for a given turbine inlet temperature, resulting in low NOx emissions while minimizing emissions of CO and hydrocarbons. In addition, to increase overall cycle efficiency, engines are being operated at higher pressure ratios and/or higher combustor inlet temperatures. Increasing combustor inlet temperatures and pressures in combination with lean-premixed operation leads to increased reactivity of the fuel/air mixture, leading to increased risk of potentially damaging flashback. Curtailing flashback on engines operated on hydrocarbon fuels requires care in design of the premixer. Curtailing flashback becomes more challenging when fuels with reactive components such as hydrogen are considered. Such fuels are gaining interest because they can be generated from both conventional and renewable sources and can be blended with natural gas as a means for storage of renewably generated hydrogen. The two main approaches for coping with flashback are either to design a combustor that is resistant to flashback, or to design one that will not anchor a flame if a flashback occurs. An experiment was constructed to determine the flameholding tendencies of various fuels on typical features found in premixer passage ways (spokes, steps, etc.) at conditions representative of a gas turbine premixer passage way. In the present work tests were conducted for natural gas and hydrogen between 3 and 9 atm, between 530 K and 650K, and free stream velocities from 40 to 100 m/s. Features considered in the present study include a spoke in the center of the channel and a step at the wall. The results are used in conjunction with existing blowoff correlations to evaluate flameholding propensity of these physical features over the range of conditions studied. The results illustrate that correlations that collapse data obtained at atmospheric pressure do not capture trends observed for spoke and wall step features at elevated pressure conditions. Also, a notable fuel compositional effect is observed.


Author(s):  
Rolf Gabrielsson ◽  
Robert Lundberg ◽  
Patrick Avran

The European Gas Turbine Program “AGATA” which started in 1993 now has reached its verification phase. The objective of the program is to develop three critical ceramic components aimed at a 60 kW turbogenerator in a hybrid electric vehicle — a catalytic combustor, a radial turbine wheel and a static heat exchanger. The AGATA partners represent car manufacturers as well as companies and research institutes in the turbine, catalyst and ceramic material fields in both France and Sweden. Each of the three ceramic components is validated separately during steady state and transient conditions in separate test rigs at ONERA, France, where the high pressure/temperature conditions can be achieved. A separate test rig for laser measurements downstream of the catalytic combustor is set up at Volvo Aero Turbines, Sweden. The catalytic combustor design which includes preheater, premix duct and catalytic section operates at temperatures up to 1623 K. Due to this high temperature, the catalyst initially has undergone pilot tests including ageing, activity and strength tests. The premix duct flow field also has been evaluated by LDV measurements. The full scale combustion tests are ongoing. The turbine wheel design is completed and the first wheels have been manufactured. FEM calculations have indicated that stress levels are below 300 MPa. The material used is a silicon nitride manufactured by AC Cerama (Grade CSN 101). Cold spin tests with complete wheels have started. Hot spin tests at TTT 1623 K will be performed in a modified turbo charger rig and are expected to start in February 1998. The heat exchanger is of a high efficiency plate recuperator design using Cordierite material. Hot side inlet temperature is 1286 K. Therefore initial tests with test samples have been run to evaluate the thermomechanical properties at high temperatures. Tests are now proceeding with a 1/4 scale recuperator prototype to evaluate performance at steady state conditions. Manufacturing of the full scale heat exchanger is now in progress.


Author(s):  
M. K. Pulimood

This paper outlines the field experience gained from the modular retrofitting of four gas turbine inlet systems with a second stage high efficiency media filter to reduce gas turbine fouling conditions. The original gas turbine inlet systems were furnished with inertial filters. Within a few thousand hours of operation considerable gas turbine performance loss had occurred. Field inspection revealed excessive fouling of the gas generator axial compressor sections, and crusty dust particle build up within the gas turbine internals and thermocouples. A second-stage high efficiency media filter was retrofitted, to capture the fine dust particles that passed through the inertial filters. Follow-up inspection of the two-stage filter systems, after about 8000 hr of operation, disclosed little indication of the engine fouling conditions that were present prior to the retrofitting.


1998 ◽  
Vol 120 (1) ◽  
pp. 179-185 ◽  
Author(s):  
R. Gabrielsson ◽  
G. Holmqvist

The four-year European Gas Turbine Program “AGATA” was started in January 1993 with the objective of developing three critical components aimed at a 60 kW turbogenerator in an hybrid electric vehicle: a catalytic combustor, a radial turbine wheel and a static heat exchanger. The AGATA partners represent car manufacturers as well as companies and research institutes in the turbine, catalyst, and ceramic material fields in both France and Sweden. This paper outlines the main results of the AGATA project for the first three-year period. Experimental verification of the components started during the third year of the program. A high-pressure/temperature test rig for the combustor and the heat exchanger tests has been built and is now being commissioned. A high-temperature turbine spin rig will be ready late 1995. The turbine wheel design is completed and ceramic Si3N4 spin disks have been manufactured by injection molding and Hot Isostatic Pressing (HIP). A straight blade design has been selected and FEM calculations have indicated that stress levels that occur during a cold start are below 300 MPa. The catalytic combustor final design for full-scale testing has been defined. Due to the high operating temperature, 1350°C, catalyst pilot tests have included aging, activity, and strength tests. Based on these tests, substrate and active materials have been selected. Initial full-scale tests including LDV measurements in the premix duct will start late 1995. The heat exchanger design has also been defined. This is based on a high-efficiency plate recuperator design. One critical item is the ceramic thermoplastic extrusion manufacturing method for the extremely thin exchanger plates another is the bonding technique: ceramic to ceramic and ceramic to metal. Significant progress on these two items has been achieved. The manufacturing of quarter scale prototypes is now in process.


Sign in / Sign up

Export Citation Format

Share Document