Field Experience With Gas Turbine Inlet Air Filtration

Author(s):  
M. K. Pulimood

This paper outlines the field experience gained from the modular retrofitting of four gas turbine inlet systems with a second stage high efficiency media filter to reduce gas turbine fouling conditions. The original gas turbine inlet systems were furnished with inertial filters. Within a few thousand hours of operation considerable gas turbine performance loss had occurred. Field inspection revealed excessive fouling of the gas generator axial compressor sections, and crusty dust particle build up within the gas turbine internals and thermocouples. A second-stage high efficiency media filter was retrofitted, to capture the fine dust particles that passed through the inertial filters. Follow-up inspection of the two-stage filter systems, after about 8000 hr of operation, disclosed little indication of the engine fouling conditions that were present prior to the retrofitting.

Author(s):  
J. K. Hubbard ◽  
C. Austin

The paper describes the development and initial field experience with a new high efficiency 26,000/30,000 hp gas turbine. Exhaust heat from the power turbine was used to boost the installation thermal efficiency and provide icing protection for the inlet. Wherever possible, proven power turbine design concepts were combined with the advances of a “second generation” aircraft derivative gas generator to produce a reliable machine which was introduced with a minimum of development time. To assure field success, a special test facility was constructed and the unit subjected to a full load mechanical and performance test under simulated field condition.


Author(s):  
Olaf Brekke ◽  
Lars E. Bakken

There is currently no international standard for evaluating and documenting the performance of the complete gas turbine intake air system in offshore applications. Several suppliers document the performance of their filters in accordance with applicable Heating, Ventilation, and Air Conditioning (HVAC) air-filtration standards for general ventilation. These standards fail to address the offshore-specific challenges related to salt removal and moist and wet operation and cannot be used to accurately predict operational performance or life. It is therefore desirable to develop suitable test methods and standards that can be used to better predict operational performance and life before filters and complete inlet air systems are put into operation offshore. An experimental test rig has been built in the laboratory at the Norwegian University of Science and Technology (NTNU) in order to increase understanding of the fundamentals related to gas turbine inlet air filtration. This paper presents the results from an experimental test program where the test rig was used to evaluate the effect of accelerated deterioration of high-efficiency filter elements for gas turbine inlet air filtration. High-efficiency filter elements from different suppliers were deteriorated by ingesting a saltwater solution. The performance of the filters exposed to accelerated deterioration was evaluated for different levels of contamination and compared to the performance of filter elements that have accumulated comparable amounts of contaminants in offshore operation.


Author(s):  
E. Benvenuti ◽  
B. Innocenti ◽  
R. Modi

This paper outlines parameter selection criteria and major procedures used in the PGT 25 gas turbine power spool aerodynamic design; significant results of the shop full-load tests are also illustrated with reference to both overall performance and internal flow-field measurements. A major aero-design objective was established as that of achieving the highest overall performance levels possible with the matching to latest generation aero-derivative gas generators; therefore, high efficiencies were set as a target both for the design point and for a wide range of operating conditions, to optimize the turbine’s uses in mechanical drive applications. Furthermore, the design was developed to reach the performance targets in conjunction with the availability of a nominal shaft speed optimized for the direct drive of pipeline booster centrifugal compressors. The results of the full-load performance testing of the first unit, equipped with a General Electric LM 2500/30 gas generator, showed full attainment of the design objectives; a maximum overall thermal efficiency exceeding 37% at nominal rating and a wide operating flexibility with regard to both efficiency and power were demonstrated.


2020 ◽  
Vol 197 ◽  
pp. 11007
Author(s):  
Nicola Casari ◽  
Michele Pinelli ◽  
Pier Ruggero Spina ◽  
Alessio Suman ◽  
Alessandro Vulpio

The study of the adhesion of micro sized particles to gas turbine internal surfaces, commonly known as gas turbine fouling, has gained increasing attention in the last years due to its dramatic effect on machine performance and reliability. On-field fouling analysis is mostly related to visual inspections during overhaul and/or programmed stops, which are performed, in particular, when gas turbine performance degradation falls under predetermined thresholds. However, these analyses, even if performed in the most complete as possible way, are rarely (or never) related to the conditions under which the gas turbine contamination takes place since the affecting parameters are difficult or even impossible to be adequately monitored. In the present work, a small scale multistage axial compressor is used to experimentally simulate the fouling phenomenon. The test rig allows the accurate control of the most relevant operating parameters which influence the fouling phenomenon. The compressor performance loss due to particle contamination has been quantitatively assessed. Soot particles appear stickier, especially in the presence of high humidity, and represent the most harmful operating conditions for the compressor unit. The deposits on the stator vanes and the rotor blades have been detected and post-processed, highlighting the most affected regions of each compressor stage employing an image analysis package tool.


Author(s):  
Carroll D. Porter

A valveless combustor has been developed which has been tested at one to three atmospheres of pressure. It discharged combustion products at practical turbine-inlet temperatures and at a total pressure above that of the inlet. Developmental problems encountered and results are discussed. The smooth combustor cycle, a phased system of combustor tubes and pulsation traps, achieves steady flow at the inlet and outlet of the combustor system to preserve the high efficiency of today’s turbines and compressors. The combustor will soon be tested on a gas-turbine compressor to verify efficiency gain estimates.


Author(s):  
Sepehr Sanaye ◽  
Salahadin Hosseini

A novel procedure for finding the optimum values of design parameters of industrial twin-shaft gas turbines at various ambient temperatures is presented here. This paper focuses on being off design due to various ambient temperatures. The gas turbine modeling is performed by applying compressor and turbine characteristic maps and using thermodynamic matching method. The gas turbine power output is selected as an objective function in optimization procedure with genetic algorithm. Design parameters are compressor inlet guide vane angle, turbine exit temperature, and power turbine inlet nozzle guide vane angle. The novel constrains in optimization are compressor surge margin and turbine blade life cycle. A trained neural network is used for life cycle estimation of high pressure (gas generator) turbine blades. Results for optimum values for nozzle guide vane/inlet guide vane (23°/27°–27°/6°) in ambient temperature range of 25–45 ℃ provided higher net power output (3–4.3%) and more secured compressor surge margin in comparison with that for gas turbines control by turbine exit temperature. Gas turbines thermal efficiency also increased from 0.09 to 0.34% (while the gas generator turbine first rotor blade creep life cycle was kept almost constant about 40,000 h). Meanwhile, the averaged values for turbine exit temperature/turbine inlet temperature changed from 831.2/1475 to 823/1471°K, respectively, which shows about 1% decrease in turbine exit temperature and 0.3% decrease in turbine inlet temperature.


Author(s):  
Koichi Yonezawa ◽  
Genki Nakai ◽  
Kazuyasu Sugiyama ◽  
Katsuhiko Sugita ◽  
Shuichi Umezawa

In order to keep a high efficiency of a gas turbine, it is important to make a suitable maintenance. Gas turbine nozzle guide vanes (NGVs) and turbine rotor blades deteriorate through a long-time operation due to various causes such as a particle attachment, erosion, and a thermal stress. In the present study, a numerical investigation has been carried out to clarify the influence of the NGV and the rotor blade deterioration on aerodynamics in a 3-stage gas turbine. Geometries of the NGV and the rotor blade were measured from a real gas turbine using a 3-D scanner. The first stage NGVs and rotor blades usually deteriorate seriously and are usually replaced at certain intervals. Two kinds of the geometries of the NGV and the rotor blade of the first stage were obtained, which are the new ones before use and the used ones to be replaced. For the second stage and the third stage, the geometries before use were used in the computations. The numerical results show that the isentropic efficiency of the first stage increases and that of the second stage decrease due to the deterioration of the first stage. The efficiency of the third stage is not affected significantly. The mechanisms are discussed from the observation of the flow fields.


Author(s):  
Ming Guo ◽  
Qiushi Li ◽  
Anping Hou ◽  
Wei Yuan

The vortex separate flow that exists on the wall surfaces of blade, shroud, and hub is a major source of the performance loss for the modern axial fans/compressors. To-date the principal diagnostic and redesign approaches to reducing the vortex separate loss have been based on the principal parameters such as pressure, velocity, or Mach number. The original vortex separate flow may be decreased, but a new vortex separate flow which emanates from an else area may be produced, thus the whole course of designing a high performance axial compressor becomes more slowly. This paper presents a novel diagnostic approach based on Local Dynamics, which probes into physical sources of dynamic process and is quite different from principal methods, and a design scheme incorporating new restraint conditions, which depends less on the empirical formulas or models. As examples, one transonic fan rotor is diagnosed, and another low-speed compressor is diagnose and inverse-designed. The examples show that the new approach can enhance the load capability of the axial compressor and provide the high efficiency in a relatively wide working range.


Author(s):  
Olaf Brekke ◽  
Lars E. Bakken

Efficient inlet air filtration is a key element for limiting fouling, erosion, and corrosion in the compressor section of offshore gas turbine installations. Current filtration systems are normally successful in preventing serious erosion and corrosion problems in the compressor section, but significant performance deterioration caused by compressor fouling still remains a challenge. This performance deterioration increases fuel consumption and emissions and has a particularly severe economic impact when it reduces oil and gas production. Operating experience from different offshore installations has shown that the deterioration rate in gas turbine performance increases when the turbines are operating in wet or humid weather and that the differential pressure loss over the intake system is affected by ambient humidity. An experimental test rig has been built in the laboratory at the Norwegian University of Science and Technology (NTNU) in order to increase understanding of the fundamentals related to gas turbine inlet air filtration. This paper presents the results from an experimental investigation of the performance of gas turbine inlet air filter elements that have been in operation offshore. Performance under both dry and wet conditions is assessed. Different types of filter elements show significantly different changes in differential pressure signature when exposed to moisture, and all of the tested filter elements demonstrate a loss of accumulated contamination after operating in wet conditions. Hence, contaminants originally accumulated by the filter elements are re-entrained into the airstream on the downstream side of the filters when they are exposed to moisture. The change in differential pressure signature as a result of operating in wet conditions demonstrates another weakness of solely applying differential pressure for condition monitoring of the filter system.


Author(s):  
R. J. Dupuis ◽  
H. I. H. Saravanamuttoo ◽  
D. M. Rudnitski

Fault matrices can be predicted for any gas turbine, making use of well established component matching techniques and corrections for component deterioration. Quantification of deterioration levels is difficult and more than one component may be subject to in-service deterioration. Computer models of a twin-spool gas generator have been used to predict the effects of varying levels of component performance loss, and these are used to evaluate fault matrices for use with engines in the field.


Sign in / Sign up

Export Citation Format

Share Document