Alstom GT11N2 M Expansion Turbine Design Modification and Operation Experience

Author(s):  
Sergey Vorontsov ◽  
Stefan Irmisch ◽  
Alexey Karelin ◽  
Marcelo Rocha

This paper summarizes the development steps and measures taken for the upgrade of the GT11N2 Turbine. The main targets to be achieved were specified as follows: - GT power increase; - GT gross efficiency increase; - Flexible operation with respect to power output and service interval length. All 4 turbine stages were re-designed in order to optimize their aerodynamic performance and minimize cooling air consumption. Turbine aerodynamic efficiency improvement was achieved by means of: - Turbine stage-to-stage loading optimization; - 3D airfoil profiling; - Replacement of the damping bolt of blade 4 by a full shroud; - Stator/rotor sealing optimization. On top of that, cooling air consumption was reduced by means of cooling system optimization for Vane 1, Blade 1, Vane 2, Blade2 and SHS/A. This allowed an increase of TIT (inlet turbine mixed temperature) keeping the hot gas temperature at the turbine inlet unchanged, which is important for meeting lifetime and emission targets. One of the key requirements for this Turbine Upgrade was to use exclusively validated design approaches and design features as available from existing and proven Alstom Gas Turbines ([1], [2], [3]) in order to minimize development- and implementation risks. Manufacturing of the new turbine parts was completed in an exceptionally short time, thanks to a dedicated R&D Logistic and Manufacturing support/process, an efficient NCR (Non Conformance Report) process, early supplier involvement and a very close/open work with suppliers. The first prototype of this turbine was implemented in a GT11N2 customer engine. Performance validation runs, performed in May 2008 confirmed that the design targets for power and efficiency were fully met. The validation of the turbine parts lifetime is still ongoing.

Author(s):  
Grzegorz Nowak

This paper discusses the problem of cooling system optimization within a gas turbine airfoil regarding to thermo-mechanical behavior of the component, as well as some economical aspects of turbine operation. The main goal of this paper is to show the possibilities of evolutionary approach application to the cooling system optimization. This method, despite its relatively high computational cost, seems to be a valuable tool to such technical problems. The analysis involves the optimization of location and size of internal cooling passages within an airfoil. Initially cooling is provided with circular passages and heat is transported by convection. During the optimization the number of channels can vary. The task is approached in 3D configuration. Each passage is fed with cooling air of constant parameters at the inlet. Also a constant pressure drop is assumed along the passage length. The thermal boundary conditions in passages vary with diameter and local vane temperature (passage wall temperature). The analysis is performed by means of the genetic algorithm for the optimization task and FEM for the heat transfer predictions within the component. In the present study the airfoil profile is taken as aerodynamically optimal and the objective of the search procedure is to find cooling structure variant that at given external conditions provides lower stresses, material temperature and indirectly coolant usage.


Author(s):  
A. W. Reichert ◽  
M. Janssen

Siemens heavy duty Gas Turbines have been well known for their high power output combined with high efficiency and reliability for more than 3 decades. Offering state of the art technology at all times, the requirements concerning the cooling and sealing air system have increased with technological development over the years. In particular the increase of the turbine inlet temperature and reduced NOx requirements demand a highly efficient cooling and sealing air system. The new Vx4.3A family of Siemens gas turbines with ISO turbine inlet temperatures of 1190°C in the power range of 70 to 240 MW uses an effective film cooling technique for the turbine stages 1 and 2 to ensure the minimum cooling air requirement possible. In addition, the application of film cooling enables the cooling system to be simplified. For example, in the new gas turbine family no intercooler and no cooling air booster for the first turbine vane are needed. This paper deals with the internal air system of Siemens gas turbines which supplies cooling and sealing air. A general overview is given and some problems and their technical solutions are discussed. Furthermore a state of the art calculation system for the prediction of the thermodynamic states of the cooling and sealing air is introduced. The calculation system is based on the flow calculation package Flowmaster (Flowmaster International Ltd.), which has been modified for the requirements of the internal air system. The comparison of computational results with measurements give a good impression of the high accuracy of the calculation method used.


Author(s):  
Ioanna Aslanidou ◽  
Budimir Rosic ◽  
Vasudevan Kanjirakkad ◽  
Sumiu Uchida

The remarkable developments in gas turbine materials and cooling technologies have allowed a steady increase in combustor outlet temperature and hence in gas turbine efficiency over the last half century. However, the efficiency benefits of higher gas temperature, even at the current levels, are significantly offset by the increased losses associated with the required cooling. Additionally, the advancements in gas turbine cooling technology have introduced considerable complexities into turbine design and manufacture. Therefore, a reduction in coolant requirements for the current gas temperature levels is one possible way for gas turbine designers to achieve even higher efficiency levels. The leading edges of the first turbine vane row are exposed to high heat loads. The high coolant requirements and geometry constraints limit the possible arrangement of the multiple rows of film cooling holes in the so called showerhead region. In the past, investigators have tested many different showerhead configurations, varying the number of rows, inclination angle and shape of the cooling holes. However the current leading edge cooling strategies using showerheads have not been shown to allow further increase in turbine temperature without excessive use of coolant air. Therefore new cooling strategies for the first vane have to be explored. In gas turbines with multiple combustor chambers around the annulus, the transition duct walls can be used to shield, i.e. to protect the first vane leading edges from the high heat loads. In this way the stagnation region at the leading edge and the shower-head of film cooling holes can be completely removed, resulting in a significant reduction in the total amount of cooling air that is otherwise required. By eliminating the showerhead the shielding concept significantly simplifies the design and lowers the manufacturing costs. This paper numerically analyses the potential of the leading edge shielding concept for cooling air reduction. The vane shape was modified to allow for the implementation of the concept and non-restrictive relative movement between the combustor and the vane. It has been demonstrated that the coolant flow that was originally used for cooling the combustor wall trailing edge and a fraction of the coolant air used for the vane showerhead cooling can be used to effectively cool both the suction and the pressure surfaces of the vane.


Author(s):  
Hiroyuki Yamazaki ◽  
Yoshiaki Nishimura ◽  
Masahiro Abe ◽  
Kazumasa Takata ◽  
Satoshi Hada ◽  
...  

Tohoku Electric Power Company, Inc. (Tohoku-EPCO) has been adopting cutting-edge gas turbines for gas turbine combined cycle (GTCC) power plants to contribute for reduction of energy consumption, and making a continuous effort to study the next generation gas turbines to further improve GTCC power plants efficiency and flexibility. Tohoku-EPCO and Mitsubishi Hitachi Power Systems, Ltd (MHPS) developed “forced air cooling system” as a brand-new combustor cooling system for the next generation GTCC system in a collaborative project. The forced air cooling system can be applied to gas turbines with a turbine inlet temperature (TIT) of 1600deg.C or more by controlling the cooling air temperature and the amount of cooling air. Recently, the forced air cooling system verification test has been completed successfully at a demonstration power plant located within MHPS Takasago Works (T-point). Since the forced air cooling system has been verified, the 1650deg.C class next generation GTCC power plant with the forced air cooling system is now being developed. Final confirmation test of 1650deg.C class next generation GTCC system will be carried out in 2020.


Author(s):  
Selcuk Can Uysal ◽  
James B. Black

Abstract During the operation of an industrial gas turbine, the engine deviates from its new condition performance because of several effects including dirt build-up, compressor fouling, material erosion, oxidation, corrosion, turbine blade burning or warping, thermal barrier coating (TBC) degradation, and turbine blade cooling channel clogging. Once these problems cause a significant impact on engine performance, maintenance actions are taken by the operators to restore the engine to new performance levels. It is important to quantify the impacts of these operational effects on the key engine performance parameters such as power output, heat rate and thermal efficiency for industrial gas turbines during the design phase. This information can be used to determine an engine maintenance schedule, which is directly related to maintenance costs during the anticipated operational time. A cooled gas turbine performance analysis model is used in this study to determine the impacts of the TBC degradation and compressor fouling on the engine performance by using three different H-Class gas turbine scenarios. The analytical tool that is used in this analysis is the Cooled Gas Turbine Model (CGTM) that was previously developed in MATLAB Simulink®. The CGTM evaluates the engine performance using operating conditions, polytropic efficiencies, material properties and cooling system information. To investigate the negative impacts on engine performance due to structural changes in TBC material, compressor fouling, and their combined effect, CGTM is used in this study for three different H-Class engine scenarios that have various compressor pressure ratios, turbine inlet temperatures, and power and thermal efficiency outputs; each determined to represent different classes of recent H-Class gas turbines. Experimental data on the changes in TBC performance are used as an input to the CGTM as a change in the TBC Biot number to observe the impacts on engine performance. The effect of compressor fouling is studied by changing the compressor discharge pressures and polytropic compressor efficiencies within the expected reduction ranges. The individual and combined effects of compressor fouling and TBC degradation are presented for the shaft power output, thermal efficiency and heat rate performance parameters. Possible improvements for the designers to reduce these impacts, and comparison of the reductions in engine performance parameters of the studied H-Class engine scenarios are also provided.


Author(s):  
Feijia Yin ◽  
Floris S. Tiemstra ◽  
Arvind G. Rao

As the overall pressure ratio (OPR) and turbine inlet temperature (TIT) of modern gas turbines are constantly being increased in the pursuit of increasing efficiency and specific power, the effect of bleed cooling air on the engine performance is increasingly becoming important. During the thermodynamic cycle analysis and optimization phase, the cooling bleed air requirement is either neglected or is modeled by simplified correlations, which can lead to erroneous results. In this current research, a physics-based turbine cooling prediction model, based on semi-empirical correlations for heat transfer and pressure drop, is developed and verified with turbine cooling data available in the open literature. Based on the validated model, a parametric analysis is performed to understand the variation of turbine cooling requirement with variation in TIT and OPR of future advanced engine cycles. It is found that the existing method of calculating turbine cooling air mass flow with simplified correlation underpredicts the amount of turbine cooling air for higher OPR and TIT, thus overpredicting the estimated engine efficiency.


Author(s):  
Antonio Andreini ◽  
Riccardo Da Soghe ◽  
Bruno Facchini ◽  
Stefano Zecchi

The improvement of the aerodynamic efficiency of gas turbine components is becoming more and more difficult to achieve. Nevertheless there are still some devices that could be improved to enhance engine performance. Further investigations on the internal air cooling systems, for instance, may lead to a reduction of cavities cooling air with a direct beneficial effect on engine performance. At the same time, further investigations on heat transfer mechanisms within turbine cavities may help to optimize cooling air flows saving engine life duration. This paper presents some CFD preliminary studies conducted on an two-stage axial turbine rig developed in a research programme on internal air systems funded by EU, named the Main Annulus Gas Path Interactions (MAGPI). Each turbine stage consists of 39 vanes and 78 rotating blades and the modelled domain includes both the main gas path of the two turbine stages and the second stator well. Pre experimental tests CFD computations were planned in order to point out the reliability of numerical models in the description of the flow patterns in the main annulus and in the cavities. Several computational meshes were considered with steady and unsteady approaches in order to assess the sensitivity to computational approach regarding the evaluation of the interactions between main annulus and disk cavities flows. Results were obtained for several cavities cooling air mass-flow rates and data were further analyzed to investigate the influence of the sealing flow inside the main annulus. MAGPI project is a 4 years Specific-Targeted-Research-Project (2007–2011) and its consortium includes six universities and nine gas turbines manufacturing companies. The project is focused on the analysis of interactions between primary and secondary air systems achieving a novel approach as these systems have, up to now, only been considered separately. In particular one of the tasks of the project will focus on heat transfer phenomena and delivering experimental data which will be used to validate the advanced design tools used by industries (CFD codes and correlative formulations).


2012 ◽  
Vol 135 (2) ◽  
Author(s):  
Ioanna Aslanidou ◽  
Budimir Rosic ◽  
Vasudevan Kanjirakkad ◽  
Sumiu Uchida

The remarkable developments in gas turbine materials and cooling technologies have allowed a steady increase in combustor outlet temperature and, hence, in gas turbine efficiency over the last half century. However, the efficiency benefits of higher gas temperature, even at the current levels, are significantly offset by the increased losses associated with the required cooling. Additionally, the advancements in gas turbine cooling technology have introduced considerable complexities into turbine design and manufacture. Therefore, a reduction in coolant requirements for the current gas temperature levels is one possible way for gas turbine designers to achieve even higher efficiency levels. The leading edges of the first turbine vane row are exposed to high heat loads. The high coolant requirements and geometry constraints limit the possible arrangement of the multiple rows of film cooling holes in the so-called showerhead region. In the past, investigators have tested many different showerhead configurations by varying the number of rows, inclination angle, and shape of the cooling holes. However, the current leading edge cooling strategies using showerheads have not been shown to allow a further increase in turbine temperature without the excessive use of coolant air. Therefore, new cooling strategies for the first vane have to be explored. In gas turbines with multiple combustor chambers around the annulus, the transition duct walls can be used to shield, i.e., to protect, the first vane leading edges from the high heat loads. In this way, the stagnation region at the leading edge and the showerhead of film cooling holes can be completely removed, resulting in a significant reduction in the total amount of cooling air that is otherwise required. By eliminating the showerhead the shielding concept significantly simplifies the design and lowers the manufacturing costs. This paper numerically analyzes the potential of the leading edge shielding concept for cooling air reduction. The vane shape was modified to allow for the implementation of the concept and nonrestrictive relative movement between the combustor and the vane. It has been demonstrated that the coolant flow that was originally used for cooling the combustor wall trailing edge and a fraction of the coolant air used for the vane showerhead cooling can be used to effectively cool both the suction and the pressure surfaces of the vane.


Author(s):  
Antonio Andreini ◽  
Riccardo Becchi ◽  
Bruno Facchini ◽  
Lorenzo Mazzei ◽  
Alessio Picchi ◽  
...  

Stricter legislation limits concerning NOx emissions are leading main aero-engine manufacturers to update the architecture of the combustors towards the implementation of lean burn combustion concept. Cooling air availability for the thermal management of combustor liners is significantly reduced, demanding even more effective liner cooling schemes. The state-of-the-art of liner cooling technology is represented by effusion cooling, consisting in a very efficient cooling strategy based on multi-perforated liners, where metal temperature is lowered by the combined protective effect of coolant film and heat removal inside the holes. The present research study aims at deepening the knowledge of effusion systems, exploiting the results of a thorough experimental campaign carried out in two different planar test rigs, equipped with a complete liner cooling scheme composed by slot injection and effusion array. The film cooling protection was analysed using PSP (Pressure Sensitive Paint) technique, while the effect of cooling injection and extraction from the annulus on heat transfer distribution were studied by means of TLC (Thermochromic Liquid Crystals) thermography. Thermal measurements were supported by flow field investigation with standard 2D PIV (Particle Image Velocimetry) in order to highlight the typical velocity distributions generated by a realistic lean injector. These detailed experimental data were exploited in a 1D thermal flow-network solver that allows to better assess the main cooling mechanisms characterising the proposed cooling system. Moreover, an optimized cooling configuration with enhanced back-side convective cooling was proposed and compared with the standard configuration in terms of metal temperature and cooling consumption.


Author(s):  
Grzegorz Nowak ◽  
Włodzimierz Wro´blewski

This paper discusses the problem of airfoil cooling system optimization connected with Conjugate Heat Transfer (CHT) analysis for reliable thermal field prediction within a cooled component. Since the full CHT solution, which involves the main flow, blade material and the coolant flow domains is computationally expensive from the point of view of optimization process, it was decided to reduce the problem by fixing the boundary conditions at the blade surface and solving the task for the interior only (both solid material and coolant). Such assumption, on one hand, makes the problem computationally feasible, and on the other, provides more reliable thermal field prediction than it used to be with the empirical relationships. The analysis involves the optimization of location and size of internal cooling passages within an airfoil. Initially, cooling is provided with circular passages and heat is transported by convection. The task is approached in 3D configuration. Each passage is fed with cooling air of constant parameters at the inlet. In the present study the airfoil profile is taken as aerodynamically optimal. The optimization is done with an evolutionary algorithm within a 30 dimensional design space, composed of space coordinates and radii of cooling channels. The search is realized with a weighted single objective function, which consisted of three objectives formulated on the basis of the airfoil’s thermal field and coolant mass flow.


Sign in / Sign up

Export Citation Format

Share Document