An Optimizing Method to Balance Aerodynamic Loading for Gas Turbine Engine Preliminary Design

Author(s):  
Qiuye Tu ◽  
Xianzhong Huang ◽  
Yang Shi ◽  
Kun Yang ◽  
Li Zhou

This paper presents a method to balance aerodynamic loading by optimizing the combined efficiencies of co-axial compressors and turbines for engine preliminary design. Relationships between the aerodynamic and dimensional parameters for co-axial compressors and turbines were set up by nonlinear equations. And the boundary conditions of the equations are thermodynamic parameters and Smith Charts of compressors and turbines. The process of the method includes the initial value guess, reference point determination and aerodynamic optimization. The first step solves approximate stage numbers for co-axial compressors and turbines, and other initial values used in the second step. In the second step, an appropriate solution of the equations determines a reference point on the Smith Chart. The first step is required for a better convergence in the second step due to the nature of the Newton-Raphson solver. In the third step, the combined efficiencies of co-axial compressors and turbines are optimized under the specified constraints. An optimizing tool was developed based on the proposed method. An example of a core engine was analyzed by using this tool. The results showed the reliability and high fidelity of the method.

2018 ◽  
Vol 28 (1) ◽  
pp. 209-225 ◽  
Author(s):  
Rafal Doroz ◽  
Krzysztof Wrobel ◽  
Piotr Porwik

AbstractThis paper presents an effective method for the detection of a fingerprint’s reference point by analyzing fingerprint ridges’ curvatures. The proposed approach is a multi-stage system. The first step extracts the fingerprint ridges from an image and transforms them into chains of discrete points. In the second step, the obtained chains of points are processed by a dedicated algorithm to detect corners and other points of highest curvature on their planar surface. In a series of experiments we demonstrate that the proposed method based on this algorithm allows effective determination of fingerprint reference points. Furthermore, the proposed method is relatively simple and achieves better results when compared with the approaches known from the literature. The reference point detection experiments were conducted using publicly available fingerprint databases FVC2000, FVC2002, FVC2004 and NIST


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Lucio Fuentelsaz ◽  
Juan P. Maicas ◽  
Javier Montero

AbstractThe creation of new ventures involves a great deal of risk and uncertainty. However, research has been theoretically divergent and empirically inconclusive about the influence of individuals’ risk tolerance on entrepreneurial entry. In this paper, we argue that this relationship is contingent on the reference point of individuals, taking into account the human capital and the opportunity cost of individuals when they decide to start a venture. This approach allows us to clarify some of the previous mixed results in the literature. We use a sample of almost 600,000 individuals from 90 countries that have participated in the Global Entrepreneurship Monitor project between 2010 and 2014. Our results show that individuals with previous experience as entrepreneurs do not need to be so risk-tolerant to set up their own venture, while individuals with a job and/or a high educational level need to be especially risk-tolerant to become entrepreneurs.


2011 ◽  
Vol 133 (11) ◽  
Author(s):  
Xiaoqiang Tang ◽  
Rui Yao

China is now building the world’s largest single dish radio telescope in Guizhou province, which is called Five-hundred meter Aperture Spherical radio Telescope (FAST). The main purpose of this paper is to present an effective dimensional design method on the six-cable driven parallel manipulator of FAST. Sensitivity design method is adopted for the six-cable driven parallel manipulator of FAST. Cable has the capability to bear tension but not compression, so that cable driven parallel manipulator may not be controlled as expected if tension of one cable is small or zero. Therefore, for dimensional design of the six-cable driven parallel manipulator, three functions to evaluate tension performance were proposed. The tension performance functions can reflect the uniformity of cable tension and controllability of the six-cable driven parallel manipulator. According to the sensitivity design method and tension performance evaluating functions, a set of optimized dimensional parameters is calculated for constructing the six-cable driven parallel manipulator of FAST. In order to verify the optimization design result, a similarity model of the six-cable driven parallel manipulator was set up in Beijing. A serial of experiments shows that tension performance of the six-cable driven parallel manipulator satisfies the system’s requirement. More importantly, it provides a theoretical reference for further study on dimensional design of a cable driven parallel manipulator with large span.


2021 ◽  
Vol 11 (6) ◽  
pp. 2785
Author(s):  
Michael Lösler ◽  
Cornelia Eschelbach ◽  
Thomas Klügel ◽  
Stefan Riepl

A global geodetic reference system (GGRS) is realized by physical points on the Earth’s surface and is referred to as a global geodetic reference frame (GGRF). The GGRF is derived by combining several space geodetic techniques, and the reference points of these techniques are the physical points of such a realization. Due to the weak physical connection between the space geodetic techniques, so-called local ties are introduced to the combination procedure. A local tie is the spatial vector defined between the reference points of two space geodetic techniques. It is derivable by local measurements at multitechnique stations, which operate more than one space geodetic technique. Local ties are a crucial component within the intertechnique combination; therefore, erroneous or outdated vectors affect the global results. In order to reach the ambitious accuracy goal of 1 mm for a global position, the global geodetic observing system (GGOS) aims for strategies to improve local ties, and, thus, the reference point determination procedures. In this contribution, close range photogrammetry is applied for the first time to determine the reference point of a laser telescope used for satellite laser ranging (SLR) at Geodetic Observatory Wettzell (GOW). A measurement campaign using various configurations was performed at the Satellite Observing System Wettzell (SOS-W) to evaluate the achievable accuracy and the measurement effort. The bias of the estimates were studied using an unscented transformation. Biases occur if nonlinear functions are replaced and are solved by linear substitute problems. Moreover, the influence of the chosen stochastic model onto the estimates is studied by means of various dispersion matrices of the observations. It is shown that the resulting standard deviations are two to three times overestimated if stochastic dependencies are neglected.


Author(s):  
K. R. Pullen ◽  
N. C. Baines ◽  
S. H. Hill

A single stage, high speed, high pressure ratio radial inflow turbine was designed for a single shaft gas turbine engine in the 200 kW power range. A model turbine has been tested in a cold rig facility with correct simulation of the important non-dimensional parameters. Performance measurements over a wide range of operation were made, together with extensive volute and exhaust traverses, so that gas velocities and incidence and deviation angles could be deduced. The turbine efficiency was lower than expected at all but the lowest speed. The rotor incidence and exit swirl angles, as obtained from the rig test data, were very similar to the design assumptions. However, evidence was found of a region of separation in the nozzle vane passages, presumably caused by a very high curvature in the endwall just upstream of the vane leading edges. The effects of such a separation are shown to be consistent with the observed performance.


2019 ◽  
Vol 10 (2) ◽  
pp. 163-171
Author(s):  
Zhibin Zhang ◽  
Guangli Wang ◽  
Dezhen Xu ◽  
Shize Song

2019 ◽  
Vol 141 (9) ◽  
Author(s):  
Alexandre Capitao Patrao ◽  
Tomas Grönstedt ◽  
Anders Lundbladh ◽  
Gonzalo Montero Villar

The Boxprop is a novel, double-bladed, tip-joined propeller for high-speed flight. The concept draws inspiration from the box wing concept and could potentially decrease tip vortex strength compared with conventional propeller blades. Early Boxprop designs experienced significant amounts of blade interference. By performing a wake analysis and quantifying the various losses of the flow, it could be seen that these Boxprop designs produced 45% more swirl than a conventional reference blade. The reason for this was the proximity of the Boxprop blade halves to each other, which prevented the Boxprop from achieving the required aerodynamic loading on the outer parts of the blade. This paper presents an aerodynamic optimization of a 6-bladed Boxprop aiming at maximizing efficiency and thrust at cruise. A geometric parametrization has been adopted which decreases interference by allowing the blade halves to be swept in opposite directions. Compared with an earlier equal-thrust Boxprop design, the optimized design features a 7% percentage point increase in propeller efficiency and a lower amount of swirl and entropy generation. A vortex-like structure has also appeared downstream of the optimized Boxprop, but with two key differences relative to conventional propellers. (1) Its formation differs from a traditional tip vortex and (2) it is 46% weaker than the tip vortex of an optimized 12-bladed conventional propeller.


Author(s):  
Maxime Moret ◽  
Alexandre Delecourt ◽  
Hany Moustapha ◽  
Francois Garnier ◽  
Acher-Igal Abenhaim

The use of Multidisciplinary Design Optimization (MDO) techniques at the preliminary design phase (PMDO) of a gas turbine engine allows investing more effort at the pre-detailed phase in order to prevent the selection of an unsatisfactory concept early in the design process. Considering the impact of the turbine tip clearance on an engine’s efficiency, an accurate tool to predict the tip gap is a mandatory step towards the implementation of a full PMDO system for the turbine design. Tip clearance calculation is a good candidate for PMDO technique implementation considering that it implies various analyses conducted on both the rotor and stator. As a first step to the development of such tip clearance calculator satisfying PMDO principles, the present work explores the automation feasibility of the whole analysis phase of a turbine rotor preliminary design process and the potential increase in the accuracy of results and time gains. The proposed conceptual system integrates a thermal boundary conditions automated calculator and interacts with a simplified air system generator and with several conception tools based on parameterized CAD models. Great improvements were found when comparing this work’s analysis results with regular pre-detailed level tools, as they revealed to be close to the one generated by the detailed design tools used as target. Moreover, this design process revealed to be faster than a common preliminary design phase while leading to a reduction of time spent at the detailed design phase. By requiring fewer user inputs, this system decreases the risk of human errors while entirely leaving the important decisions to the designer.


Author(s):  
Roque Corral ◽  
Almudena Vega ◽  
Michele Greco

Abstract A simple non-dimensional model to describe the flutter onset of two-fin straight labyrinth seals [1] is extended to stepped seals. The effect of the axial displacement of the seal is analyzed first in isolation. It is shown that this fundamental mode is always stable. In a second step, the combination of axial and torsion displacements is used to determine the damping of modes with arbitrary torsion centers. It is concluded that the classical Abbot’s criterion stating that seals supported in the low-pressure side of the seal are stable provided that natural frequency of the mode is greater than the acoustic frequency breaks down under certain conditions. An analytical expression for the non-dimensional work-per-cycle is derived and new non-dimensional parameters controlling the seal stability identified. It is finally concluded the stability of stepped seals can be assimilated to that of a straight through seal if the appropriate distance of the torsion center to the seal is chosen.


Sign in / Sign up

Export Citation Format

Share Document