Numerical Investigation of an Inverted Brayton Cycle Micro Gas Turbine Based on Experimental Data

Author(s):  
Eleni Agelidou ◽  
Martin Henke ◽  
Thomas Monz ◽  
Manfred Aigner

Residential buildings account for approximately one fifth of the total energy consumption and 12 % of the overall CO2 emissions in the OECD countries. Replacing conventional boilers by a co-generation of heat and power in decentralized plants on site promises a great benefit. Especially, micro gas turbine (MGT) based combined heat and power systems are particularly suitable due to their low pollutant emissions without exhaust gas treatment. Hence, the overall aim of this work is the development of a recuperated inverted MGT as heat and power supply for a single family house with 1 kWel. First, an inverted MGT on a Brayton cycle MGT was developed and experimentally characterized, in previous work by the authors. This approach allows exploiting the potential of using the same components for both cycles. As a next step, the applicability of the Brayton cycle components operated in inverted mode needs to be evaluated and the requirements for a component optimization need to be defined, both, by pursuing thermodynamic cycle simulations. This paper presents a parametrization and validation of in-house 1D steady state simulation tool for an inverted MGT, based on experimental data from the inverted Brayton cycle test rig. Moreover, a sensitivity analysis is conducted to estimate the influence of every major component on the overall system and to identify the necessary optimizations. Finally, the component requirements for an optimized inverted MGT with 1 kWel and 16 % of electrical efficiency are defined. This work demonstrates the high potential of an inverted MGT for a decentralized heat and power generation when optimizing the system components.

Author(s):  
Eleni Agelidou ◽  
Thomas Monz ◽  
Andreas Huber ◽  
Manfred Aigner

Decentralized heat and power (CHP) production constitutes a promising solution to reduce the primary energy consumption and greenhouse gas emissions. Here, micro gas turbine (MGT) based CHP systems are particularly suitable due to their low pollutant emissions without exhaust gas treatment. Typically, the electrical power demand for single houses ranges from 1 to several kWel. However, downsizing turbocharger components of a conventional MGT CHP system can reduce electrical efficiencies since losses like seal and tip leakages, generally do not scale proportionally with size. By introducing an inverted Brayton Cycle (IBC) based MGT this potential can be exploited. The IBC keeps the volumetric flows constant while mass flow and thermodynamic work are scaled by the ratio of pressure level. Since the performance of turbocharger components is mainly driven by the volumetric flow they should be applicable for both cycles. Hence, smaller power outputs can be achieved. The overall aim of this work, is the development of a recuperated inverted MGT CHP unit for a single family house with 1 kWel. This paper presents an experimental study of the applicability and feasibility of a conventional MGT operated in IBC mode. The demonstrator was based on a single shaft, single stage conventional MGT. Reliable start up and stable operation within the entire operating range from 180 000 rpm to 240 000 rpm are demonstrated. The turbine outlet pressure varied between 0,5 bar (part load) and 0,3 bar absolute (full load). All relevant parameters such as pressure losses and efficiencies of the main components are investigated. Moreover, the power output and the mechanical and thermal losses were analyzed in detail. Although the results indicated that the mechanical and heat losses have a high influence on the performance and economic efficiency of the system, the prototype shows great potential for further development.


2019 ◽  
Vol 116 ◽  
pp. 00044
Author(s):  
Piotr Lis

The communal and living sector, to the extent that it is the sub-sector of buildings with a majority share of residential buildings, on average, account for approximately 41% of total energy consumption in the European Union. Due to a large share in the total energy consumption, the buildings sector has a significant potential to improve the energy efficiency of existing buildings and thus significantly reduce emission of air pollutants. One way is through thermal modernization. The article presents the expected energy and environmental effects of measures which adjust the existing residential buildings to the requirements in force in Poland since 2021. It has been assumed that the energy demand for heating buildings will be limited to the level of 55 kWh/(m2year) for multi-family residential buildings and 60 kWh/(m2year) for single-family residential buildings. The calculations show that it is possible to reduce energy consumption for heating of residential buildings by over 70%, which will result in a reduction of the total air pollutant emissions from housing heating, in relation to the situation in 2011. The article indicates existing reserves in thermal modernization activities and related problems based on the analysis of selected parameters of residential buildings.


Author(s):  
H. S. Bloomfield

The potential benefits of solar/fossil hybrid gas turbine power systems were assessed. Both retrofit and new systems were considered from the aspects of: cost of electricity, fuel conservation, operational mode, technology requirements, and fuels flexibility. Hybrid retrofit (repowering) of existing combustion (simple Brayton cycle) turbines can provide near-term fuel savings and solar experience, while new and advanced recuperated or combined-cycle systems may be an attractive fuel saving and economically competitive vehicle to transition from today’s gas- and oil-fired powerplants to other more abundant fuels.


Author(s):  
Caterina Brandoni ◽  
Gabriele Comodi ◽  
Leonardo Pelagalli ◽  
Flavio Caresana

The paper reports on the performance analysis of cogenerative and trigenerative plants based on Micro Gas Turbines. The core of the system is a natural-gas-fuelled Turbec T100 operating on a regenerated open-air cycle. A code specifically developed by the authors to simulate the micro gas turbine in cogeneration plants, and already checked against experimental data, has been upgraded to simulate the unit’s behavior when facing also a cooling demand (trigenerative case). For this purpose the model of a water-LiBr single-effect absorption chiller driven by hot water has been used. The analysis cover all the unit’s application range and represent a start for its economic evaluation.


Author(s):  
Leonardo Langone ◽  
Julia Sedlmaier ◽  
Pier Carlo Nassini ◽  
Lorenzo Mazzei ◽  
Stefan Harth ◽  
...  

Abstract Lifted flames have been investigated in the past years for their benefits in terms of NOx emissions reduction for gas turbine applications. In a lifted flame, the flame front stabilized on a position that is significantly detached from the nozzle exit, improving the premixing process before the reaction zone. The distance between the flame front and the nozzle exit is called lift-off height and it represents the main parameter that characterize this type of flame. In the present work, a partially premixed lifted flame employing air-methane mixture is investigated through numerical simulation. Indeed, even if lifted jet flames have been widely studied in the literature, there are only a few examples of lifted partially premixed flames. Nevertheless, this kind of flames assumes an important role considering the current gas turbine applications, since their benefits in terms of stability and low pollutant emissions. This study has been performed with LES calculations using a commercial software suite and the numerical results are compared with experimental data coming from a dedicated campaign held at Karlsruher Institute für Technologie (KIT) on a novel low-swirl injector nozzle. Quenching effects due to strain, curvature and heat loss have been introduced into the combustion model thanks to a correction of the source term in the progress variable equation within the FGM model. The comparison between numerical results and experimental data have been performed in terms of lift-off height and OH* chemiluminescence maps, showing the capability to properly predict the overall flow and to catch flame lift-off even if with an underpredicted height. This points out promising capability of the numerical model in the representation of lifted flames, allowing further investigations of the flame structure otherwise not available from experimental techniques.


Author(s):  
Fabrizio Reale ◽  
Raniero Sannino ◽  
Raffaele Tuccillo

Abstract In an energetic scenario where both distributed energy systems and smart energy grids gain increasing relevance, the research focus is also on the detection of new solutions to increase overall performance of small-scale energy systems. Waste heat recovery (WHR) can represent a good solution to achieve this goal, due to the possibility of converting residual thermal power in thermal engine exhausts into electrical power. The authors, in a recent study, described the opportunities related to the integration of a micro gas turbine (MGT) with a supercritical CO2 Brayton Cycle (sCO2 GT) turbine. The adoption of Supercritical Carbon Dioxide (sCO2) as working fluid in closed Brayton cycles is an old idea, already studied in the 1960s. Only in recent years this topic returned to be of interest for electric power generation (i.e. solar, nuclear, geothermal energy or coupled with traditional thermoelectric power plants as WHR). In this technical paper the authors analyzed the performance variations of different systems layout based on the integration of a topping MGT with a sCO2 GT as bottoming cycle; the performance maps for both topping and bottoming turbomachinery have been included in the thermodynamic model with the aim of investigating the part load working conditions. The MGT considered is a Turbec T100P and its behavior at part load conditions is also described. The potential and critical aspects related to the integration of the sCO2 GT as bottoming cycle are studied also through a comparison between different layouts, in order to establish the optimal compromise between overall efficiencies and complexity of the energy system. The off-design analysis of the integrated system is addressed to evaluate its response to variable electrical and thermal demands.


Author(s):  
Kirill Alexandrovich Abrosimov ◽  
Dmitrii Igorevich Galkin ◽  
Ramil Zarifovich Tumashev ◽  
Alexander Alexandrovich Ustinov

In the present work mathematical modeling of a CHP system based on Micro Gas Turbine (MGT) with Inverted Brayton Cycle (IBC) (also known as subatmospheric) is provided. Nominal electric power of the facility is 10 kW. Engineering calculation based modeling is conducted to determine optimal parameters of each component, electrical and total efficiency at full load. Further dynamic modeling is provided for the components with determined optimal parameters. With chosen optimal parameters of the scheme components and coolant temperature the dynamic (time-dependent) modeling of disturbance from the nominal state with no control, ramp down and ramp up of power load (a) and heat load (b) with the activated control system was provided. An iteration based approach of MGT modeling is suggested. The difficulties in the system control under reduction of heat consumption are revealed and challenged. The final objectives of the research are comparison of the IBC with the conventional Brayton cycle for MGT application from the electric efficiency, dynamic behavior and controllability points of view, creation of the control system for such a facility.


Author(s):  
A. Cavarzere ◽  
M. Morini ◽  
M. Pinelli ◽  
P. R. Spina ◽  
A. Vaccari ◽  
...  

The application of bio-fuels in automotive, power generation and heating applications is constantly increasing. However, the use of straight vegetable oil (pure or blended with diesel) to feed a gas turbine for electric power generation still requires experimental effort, due to the very high viscosity of straight vegetable oils. In this paper, the behavior of a Solar T-62T-32 micro gas turbine fed by vegetable oils is investigated experimentally. The vegetable oils are supplied to the micro gas turbine as blends of diesel and straight vegetable oils in different concentrations, up to pure vegetable oil. This paper describes the test rig used for the experimental activity and reports some experimental results, which highlight the effects of the different fuels on micro gas turbine performance and pollutant emissions. Moreover, an identification model is set up to predict the behavior of the considered gas turbine, when fuelled by vegetable oil, and the sensitivity of micro gas turbine thermodynamic measurements and emissions is quantitatively established.


Sign in / Sign up

Export Citation Format

Share Document