Conjugate Heat Transfer Analysis of a Small Annular Combustor With Centrifugal Fuel Injection System

Author(s):  
Rampada Rana ◽  
Alosri Prajwal ◽  
Gullapalli Sivaramakrishna ◽  
Raju Dharappa Navindgi ◽  
Nagalingam Muthuveerappan

Abstract Over the years, the requirements of higher specific thrust and lower specific fuel consumption have been necessitating a continual increase in the maximum temperature and pressure in gas turbine engines. However, such an increase has a direct impact on the structural integrity of various modules of the engine; combustor being one of the severely affected modules. This makes the combustor designer’s task of achieving the targeted life of liner, the hottest component of combustor, a challenging one. Estimation of liner metal temperature, thereby arriving at the combustor life, is an essential part of the design process. In the present study, CHT analysis of a radial annular combustor has been carried out. RANS based analysis of a sector combustor with periodicity in flow and geometry has been performed at realistic engine operating conditions using ANSYS Fluent. Predicted liner metal temperatures have been compared with the measured data and a close agreement has been noted between them, the maximum variation being ± 10%.

Fuel injection system is an indispensible part of the present day automobiles. The depletion of the fuels along with continuous surge in the fuel prices has made it imperative to use fuel economically and restricting the wastage to a minimum. Contrary to the carburetor, using predefined amount of fuel irrespective of the environment, Fuel Injection System uses just the required amount of fuel based on the operating conditions as sensed by the Engine Control Module (ECM). Numerous parameters are required to be sensed by the ECM to achieve optimum efficiency of the engine. To handle the processing of such large number of parameters, a robust architecture is required. This paper presents the design and implementation of ECM utilized in Electronic Fuel Injection (EFI) system on a Field Programmable Gate Array. The ECM architecture discussed in the proposed system is computationally efficient enough to fulfill ever-increasing functionalities of the ECM. The main objective of this research is to sense the parameters required for the ECM analysis and to interpret and analyze this data and accordingly control the solenoid (actuator). The CAN controller is also deployed in an FPGA to facilitate the communication between ECM and Human Machine Interface (HMI) to indicate the parameters sensed by the sensor on the LCD. The target device (FPGA) for this work is Xilinx Spartan 3E and the design tool is Xilinx ISE 14.7 with the ECM and CAN controller being modeled in Verilog Hardware Description Language (HDL).


Author(s):  
Fred C. Bahlmann ◽  
B. Martien Visser

The development, from concept to hardware of a lean-premixed two-stage combustor for small gas turbine engines is presented. This Annular Low Emission Combustor (ALEC) is based on a patent of R.J. Mowill. Emission characteristics of several prototypes of this combustor under a variety of conditions are presented. It is shown that ultra-low NOx levels (< 10 ppm) can be reached with satisfactory CO levels (< 50 ppm).


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Qaisar Hayat ◽  
Liyun Fan ◽  
Enzhe Song ◽  
Xiuzhen Ma ◽  
Bingqi Tian ◽  
...  

Operating conditions dependent large pressure variations are one of the working characteristics of combination electronic unit pump (CEUP) fuel injection system for diesel engines. We propose a precise and accurate nonlinear numerical model of pressure inside HP fuel pipeline of CEUP using wave equation (WE) including both viscous and frequency dependent frictions. We have proved that developed hyperbolic approximation gives more realistic description of pressure wave as compared to classical viscous damped wave equation. Frictional effects of various frequencies on pressure wave have been averaged out across valid frequencies to represent the combined effect of all frequencies on pressure wave. Dynamic variations of key fuel properties including density, acoustic wave speed, and bulk modulus with varying pressures have also been incorporated. Based on developed model we present analysis on effect of fuel pipeline length on pressure wave propagation and variation of key fuel properties with both conventional diesel and alternate fuel rapeseed methyl ester (RME) for CEUP pipeline.


1999 ◽  
Vol 121 (2) ◽  
pp. 186-196 ◽  
Author(s):  
A. E. Catania ◽  
C. Dongiovanni ◽  
A. Mittica ◽  
C. Negri ◽  
E. Spessa

A double-spring, sacless-nozzle injector was fitted to the distributor-pump fuel-injection system of an automotive diesel engine in order to study its effect on the system performance for two different configurations of the pump delivery valve assembly with a constant-pressure valve and with a reflux-hole valve, respectively. Injection-rate shapes and local pressure time histories were both numerically and experimentally investigated. The NAIS simulation program was used for theoretical analysis based on a novel implicit numerical algorithm with a second-order accuracy and a high degree of efficiency. The injector model was set up and stored in a library containing a variety of system component models, which gave a modular structure to the computational code. The program was also capable of simulating possible cavitation propagation phenomena and of taking the fluid property dependence on pressure and temperature, as well as flow shear and minor losses into account. The experimental investigation was performed on a test bench under real operating conditions. Pressures were measured in the pumping chamber at two different pipe locations and in the injector nozzle upstream of the needle-seat opening passage. This last measurement was carried out in order to determine the nozzle-hole discharge flow coefficient under nonstationary flow conditions, which was achieved for the first time in a sacless-nozzle two-stage injector over a wide pump-speed range. The numerical and experimental results were compared and discussed.


Author(s):  
John Blouch ◽  
Hejie Li ◽  
Mark Mueller ◽  
Richard Hook

The LM2500 and LM6000 dry-low-emissions aeroderivative gas turbine engines have been in commercial service for 15 years and have accumulated nearly 10 × 106 hours of commercial operation. The majority of these engines utilize pipeline quality natural gas predominantly comprised of methane. There is; however, increasing interest in nonstandard fuels that contain varying levels of higher hydrocarbon species and/or inert gases. This paper reports on the demonstrated operability of LM2500 and LM6000 DLE engines with nonstandard fuels. In particular, rig tests at engine conditions were performed to demonstrate the robustness of the dual-annular counter-rotating swirlers premixer design, relative to flameholding with fuels containing high ethane, propane, and N2 concentrations. These experiments, which test the ability of the hardware to shed a flame introduced into the premixing region, have been used to expand the quoting limits for LM2500 and LM6000 gas turbine engines to elevated C2+ levels. In addition, chemical kinetics analysis was performed to understand the effect of temperature, pressure, and fuel compositions on flameholding. Test data for different fuels and operating conditions were successfully correlated with Damkohler number.


Author(s):  
Sohail R. Reddy ◽  
George S. Dulikravich

Most methods for designing electronics cooling schemes do not offer the information on what levels of heat fluxes are maximally possible to achieve with the given material, boundary and operating conditions. Here, we offer an answer to this inverse problem posed by the question below. Given a micro pin-fin array cooling with these constraints: - given maximum allowable temperature of the material, - given inlet cooling fluid temperature, - given total pressure loss (pumping power affordable), and - given overall thickness of the entire electronic component, find out the maximum possible average heat flux on the hot surface and find the maximum possible heat flux at the hot spot under the condition that the entire amount of the inputted heat is completely removed by the cooling fluid. This problem was solved using multi-objective constrained optimization and metamodeling for an array of micro pin-fins with circular, airfoil and symmetric convex cross sections that is removing all the heat inputted via uniform background heat flux and by a hot spot. The goal of this effort was to identify a cooling pin-fin shape and scheme that is able to push the maximum allowable heat flux as high as possible without the maximum temperature exceeding the specified limit for the given material. Conjugate heat transfer analysis was performed on each of the randomly created candidate configurations. Response surfaces based on Radial Basis Functions were coupled with a genetic algorithm to arrive at a Pareto frontier of best trade-off solutions. The Pareto optimized configuration indicates the maximum physically possible heat fluxes for specified material and constraints.


1992 ◽  
Vol 114 (3) ◽  
pp. 528-533 ◽  
Author(s):  
A. K. Seshadri ◽  
J. A. Caton ◽  
K. D. Kihm

Experiments have been completed to characterize coal-water slurry sprays from a modified positive displacement fuel injection system of a diesel engine. The injection system includes an injection jerk pump driven by an electric motor, a specially designed diaphragm to separate the abrasive coal from the pump, and a single-hole fuel nozzle. The sprays were injected into a pressurized chamber equipped with windows. High speed movies and instantaneous fuel line pressures were obtained. For injection pressures of order 30 MPa or higher, the sprays were similar for coal-water slurry, diesel fuel, and water. The time until the center core of the spray broke up (break-up time) was determined both from the movies and from a model using the fuel line pressures. Results from these two independent procedures were in good agreement. For the base conditions, the break-up time was 0.58 and 0.50 ms for coal-water slurry and diesel fuel, respectively. The break-up times increased with increasing nozzle orifice size and with decreasing chamber density. The break-up time was not a function of coal loading for coal loadings up to 53 percent. Cone angles of the sprays were dependent on the operating conditions and fluid, as well as on the time and location of the measurement. For one set of cases studied, the time-averaged cone angle was 15.9 and 16.3 deg for coal-water slurry and diesel fuel, respectively.


Author(s):  
John Blouch ◽  
Hejie Li ◽  
Mark Mueller ◽  
Richard Hook

The LM2500 and LM6000 dry-low-emissions (DLE) aeroderivative gas turbine engines have been in commercial service for 15 years and have accumulated nearly 10 million hours of commercial operation. The majority of these engines utilize pipeline quality natural gas predominantly comprised of methane. There is, however, increasing interest in nonstandard fuels that contain varying levels of higher hydrocarbon species and/or inert gases. This paper reports on the demonstrated operability of LM2500 and LM6000 DLE engines with nonstandard fuels. In particular, rig tests at engine conditions were performed to demonstrate the robustness of the dual-annular counter-rotating swirlers (DACRS) premixer design, relative to flameholding with fuels containing high ethane, propane, and N2 concentrations. These experiments, which test the ability of the hardware to shed a flame introduced into the premixing region, have been used to expand the quoting limits for LM2500 and LM6000 gas turbine engines to elevated C2+ levels. In addition, chemical kinetics analysis was performed to understand the effect of temperature, pressure, and fuel compositions on flameholding. Test data for different fuels and operating conditions were successfully correlated with Damkohler number.


Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2285
Author(s):  
Min-Seop Kim ◽  
Ugochukwu Ejike Akpudo ◽  
Jang-Wook Hur

Diesel engine emissions contribute nearly 30% of greenhouse effects and diverse health and environmental problems. Amidst these problems, it is estimated that there will be a 75% increase in energy demand for transportation by 2040, of which diesel fuel constitutes a major source of energy for transportation. Being a major source of air pollution, efforts are currently being made to curb the pollution spread. The use of water-in-diesel (W/D)-emulsified fuels comes as a readily available (and cost-effective) option with other benefits including engine thermal efficiency, reduced costs, and NOx reduction; nonetheless, the inherent effects—power loss, component wear, corrosion, etc. still pose strong concerns. This study investigates the behavior and damage severity of a common rail (CR) diesel fuel injection system using exploratory and statistical methods under different W/D emulsion conditions and engine speeds. Results reveal that the effect of W/D emulsion fuels on engine operating conditions are reflected in the CR, which provides a reliable avenue for condition monitoring. Also, the effect of W/D emulsion on injection system components-piston, nozzle needle, and ball seat–are presented alongside related discussions.


Author(s):  
L. J. Spadaccini ◽  
E. J. Szetela

An experimental investigation was performed to evaluate a combustor concept which is applicable to gas turbine engines and is believed to offer valuable pollution control advantages relative to the conventional liquid-fuel-spray approach. It involves fuel prevaporization, premixing and lean combustion and may be applied to the design of combustors for aircraft, industrial or automotive powerplants. Two types of bluff-body flameholders, viz. porous-plate and drilled-plate, were evaluated for use as flame stabilizers within the combustor. Tests were conducted under sets of steady-state operational conditions corresponding, respectively, to applications in a low-pressure regenerative-cycle and high-pressure nonregenerative-cycle automobile gas turbine engines. The data acquired can be used to design gas turbine combustors having predicted performance characteristics which are better than those required to meet the most stringent automobile emissions regulations of the Federal “Clean Air Act.” Fuel prevaporization can be accomplished either externally, prior to admission into the engine airstream, or internally by the airstream itself. In support of the prevaporization concept, the feasibility of vaporizing No 2 fuel oil in a heat exchanger which is external to the engine was investigated. Tests conducted at representative operating conditions indicated that a deposit of 0.01 0-in. thickness was collected on the vaporizer wall after 50 hr of operation. A much shorter period of cleaning with hot air was sufficient to remove the deposit.


Sign in / Sign up

Export Citation Format

Share Document