Analysis of the Air-Fuel Mixture Control in Natural Gas Fuelled Turbocharged Engines

Author(s):  
Francisco Payri ◽  
Jose Galindo ◽  
Jose Manuel Luja´n ◽  
He´ctor Climent

The use of natural gas in medium and heavy duty engines for public transportation is a promising way for reducing exhaust emissions. Computer simulations, coupled with engine tests, have arisen as a valuable methodology to study the gas exchange processes inside intake and exhaust manifolds. A wave action model is set up in order to simulate a natural gas fuelled turbocharged engine. Once the modeling results show good agreement when comparing with measured data at different running conditions in terms of fluid dynamic properties, the model is used to study the air-fuel mixture process in the intake manifold and optimize the injection system behavior. Comparisons of modeled air-fuel composition in the cylinders are performed with both single and multi-point injection strategies. These cylinder to cylinder air-fuel mixture dispersion problems are analyzed at both steady and transient engine running conditions. Steady operation is performed correctly when using single-point injection since the gas mixer upstream the throttle valve enhances the mixing process. However, significant gas dispersion among cylinders appears during an engine load transient. With multi-point injection the critical parameter is the injection timing, since it is usually larger than the intake stroke period and, if it is not conveniently arranged, significant natural gas dispersion among cylinders may appear at both steady and transient running conditions.

2014 ◽  
Vol 532 ◽  
pp. 362-366 ◽  
Author(s):  
Jiang Feng Mou ◽  
Rui Qing Chen ◽  
Yi Wei Lu

This paper studies the lean burn limit characteristic of the compound injection system of the direct-injection gasoline engine. The low pressure nozzle on the intake manifold can achieve quality homogeneous lean mixture, and the direct injection in the cylinder can realized the dense mixture gas near the spark plug. By adjusting the two injection timing and injection quantity, and a strong intake tumble flow with special shaped combustion chamber, it can produces the reverse tumble to form different hierarchical levels of mixed gas in the cylinder. Experimental results show: the compound combustion system to the original direct-injection engine lean burn limit raise 1.8-2.5 AFR unit.


Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2413 ◽  
Author(s):  
Lebedevas ◽  
Pukalskas ◽  
Daukšys ◽  
Rimkus ◽  
Melaika ◽  
...  

This paper presents a study on the energy efficiency and emissions of a converted high-revolution bore 79.5 mm/stroke 95 mm engine with a conventional fuel injection system for operation with dual fuel feed: diesel (D) and natural gas (NG). The part of NG energy increase in the dual fuel is related to a significant deterioration in energy efficiency (ηi), particularly when engine operation is in low load modes and was determined to be below 40% of maximum continuous rating. The effectiveness of the D injection timing optimisation was established in high engine load modes within the range of a co-combustion ratio of NG ≤ 0.4: with an increase in ηi, compared to D, the emissions of NOx+ HC decreased by 15% to 25%, while those of CO2 decreased by 8% to 16%; the six-fold CO emission increase, up to 6 g/kWh, was unregulated. By referencing the indicated process characteristics of the established NG phase elongation in the expansion stroke, the combustion time increase as well as the associated decrease in the cylinder excess air ratio (α) are possible reasons for the increase in the incomplete combustion product emission.


Author(s):  
Madhavan Poyyapakkam ◽  
John Wood ◽  
Steven Mayers ◽  
Andrea Ciani ◽  
Felix Guethe ◽  
...  

This paper describes a novel lean premixed reheat burner technology suitable for Hydrogen-rich fuels. The inlet temperature for such a combustor is very high and reaction of the fuel/oxidant mixture is initiated through auto-ignition, the delay time for which reduces significantly for Hydrogen-rich fuels in comparison to natural gases. Therefore the residence time available for premixing within the burner is reduced. The new reheat burner concept has been optimized to allow rapid fuel/oxidant mixing, to have a high flashback margin and to limit the pressure drop penalty. The performance of the burner is described, initially in terms of its fluid dynamic properties and then its combustion characteristics. The latter are based upon full-scale high-pressure tests, where results are shown for two variants of the concept, one with a pressure drop comparable to today’s natural gas burners, and the other with a two-fold increase in pressure drop. Both burners indicated that Low NOx emissions, comparable to today’s natural gas burners, were feasible at reheat engine conditions (ca. 20 Bars and ca. 1000C inlet temperature). The higher pressure drop variant allowed a wider operating window. However the achievement of the lower pressure drop burner shows that the targeted Hydrogen-rich fuel (70/30 H2/N2 by volume) can be used within a reheat combustor without any penalty on gas turbine performance.


2007 ◽  
Vol 130 (3) ◽  
pp. 15-25
Author(s):  
Kazimierz LEJDA ◽  
Artur JAWORSKI ◽  
Adam USTRZYCKI

This article presents selected results of scientifi c research concerning the infl uence of the LPG fuel sequential injection parameters on the operating parameters of the internal combustion engine. Research was performed in the Department of Vehicles and IC Engines on SI MD-111E engine, which has been adapted to LPG fuel supply in multi-point injection system to the branches of the inlet manifold. During the research the sequential single and double injection were performed. The tests results obtained show very signifi cant infl uence of the injection parameters (onset of injection and size of the dose) on the engine operating parameters such as: engine power, torque end effi ciency.


2018 ◽  
Vol 10 (0) ◽  
pp. 1-9
Author(s):  
Romualdas Juknelevičius

The article presents the test results of the single cylinder CI engine with common rail injection system operating on biofuel – Rapeseed Methyl Ester with addition supply of hydrogen. The purpose of this investigation was to examine the influence of the hydrogen addition to the biofuel on combustion phases, engine performance, efficiency, and exhaust emissions. HES was changed within the range from 0 to 44%. Hydrogen was injected into the intake manifold, where it created homogeneous mixture with air. Tests were performed at both fixed and optimal injection timings at low, medium and nominal engine load. After analysis of the engine bench tests and simulation with AVL BOOST software, it was observed that lean hydrogen – RME mixture does not support the flame propagation and efficient combustion. While at the rich fuel mixture and with increasing hydrogen fraction, the combustion intensity concentrate at the beginning of the combustion process and shortened the ignition delay phase. AVL BOOST simulation performed within the wide range of HES (16–80%) revealed that combustion intensity moves to the beginning of combustion with increase of HES. Decrease of CO, CO2 and smoke opacity was observed with increase of hydrogen amounts to the engine. However, increase of the NO concentration in the engine exhaust gases was observed. Santrauka Straipsnyje pateikti tyrimo rezultatai, gauti atlikus bandymą vieno cilindro slėginio uždegimo variklyje su biodegalais – rapsų metilesterį (RME) ir vandenilį. Biodegalai įpurškiami akumuliatorine įpurškimo sistema „Common rail“. Šio tyrimo tikslas – ištirti, kaip vandenilis veikia biodegalų degimą, variklio veikimą, jo efektyvumą ir deginių susidarymą. Vandenilio energinė dalis degimo mišinyje buvo keičiama nuo 0 iki 44 %. Vandenilis buvo tiekiamas įsiurbimo fazės metu įsiurbimo kanalu į degimo kamerą, kurioje jis, susimaišęs su oru, sudaro homogeninį mišinį. Bandymai buvo atliekami nekeičiant įpurškimo kampo, nustačius optimalų įpurškimo kampą esant žemai, vidutinei ir nominaliai variklio apkrovai. Išnagrinėjus variklio bandymų rezultatus ir sumodeliavu AVL BOOST programa, buvo pastebėta, kad, esant liesam vandenilio ir RME mišiniui, liepsnos plitimas yra lėtas, mišinys dega neveiksmingai. Tačiau riebus degalų mišinys ir padidinta vandenilio energijos dalis užtikrina degimo intensyvumą degimo proceso pradžioje ir sutrumpina uždegimo gaišties trukmę. AVL BOOST modeliavimas, atliktas plačiu vandenilio energijos dalies diapazonu (16–80 %), patvirtino teiginį, kad degimas tampa intensyvesnis degimo pradžioje dėl padidinto vandenilio kiekio. Didinant vandenilio kiekį, buvo pastebėta, kad išmetamosiose dujose sumažėjo CO, CO2 ir kietųjų dalelių, tačiau padidėjo NO koncentracija.


2021 ◽  
Vol 2061 (1) ◽  
pp. 012065
Author(s):  
I I Libkind ◽  
A V Gonturev

Abstract When converting diesel engines to run on natural gas on the gas-diesel cycle, additional problems arise associated with the high thermal stress of the exhaust valves and valve seats at high loads and engine speeds. There is also an increase in NOx emissions due to higher combustion temperatures of natural gas. One of the ways to improve the economic and environmental performance of engines operating on a gas-diesel cycle with a lean air-fuel mixture is to optimize the combustion of the air-fuel mixture by using an exhaust gas recirculation system (EGR). The principle of operation of this system is as follows: exhaust gas entering the intake manifold and further into the combustion chamber reduces the oxygen concentration in the air-fuel mixture, which leads to a dilution effect and, accordingly, to a decrease in combustion temperature and a decrease in NOx content. In order to study the influence of EGR on the dual-fuel gas and diesel engine parameters in the AVL Boost software package, a computer model of the existing 6ChN13/15 engine was developed. A low-pressure EGR system with an exhaust gas cooler was simulated on this engine. Values of NOx emissions, brake specific fuel consumption (BSFC) and brake efficiency have been obtained at different recirculation rate by calculation method. These values allow to estimate the feasibility of using a cooled EGR in a natural gas-fueled diesel engine.


2000 ◽  
Vol 123 (1) ◽  
pp. 211-216 ◽  
Author(s):  
R. Sierens ◽  
S. Verhelst

The Laboratory of Transport Technology (Ghent University) converted a GM/Crusader V-8 engine for hydrogen use. The engine is intended for the propulsion of a midsize hydrogen city bus for public demonstration. For a complete control of the combustion process and to increase the resistance to backfire (explosion of the air–fuel mixture in the intake manifold), a sequential timed multipoint injection of hydrogen and an electronic management system is chosen. The results as a function of the engine parameters (ignition timing, injection timing and duration, injection pressure) are given. Special focus is given to topics related to the use of hydrogen as a fuel: ignition characteristics (importance of electrode distance), quality of the lubricating oil (crankcase gases with high contents of hydrogen), oxygen sensors (very lean operating conditions), and noise reduction (configuration and length of intake pipes). The advantages and disadvantages of a power regulation only by the air-to-fuel ratio (as for diesel engines) against a throttle regulation (normal gasoline or gas regulation) are examined. Finally, the goals of the development of the engine are reached: power output of 90 kW, torque of 300 Nm, extremely low emission levels, and backfire-safe operation.


2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Amir Hossein Fakhari ◽  
Rouzbeh Shafaghat ◽  
Omid Jahanian

Abstract The start of injection (SOI) timing has a significant effect on increasing the homogeneity of the air–fuel mixture in an reactivity controlled compression ignition (RCCI) engine. In this paper, the impact of the SOI timing from 14 deg to 74 deg before top dead center (bTDC) and different inlet valve closing (IVC) temperatures on natural gas/diesel RCCI performance and emissions have been studied. Also, the simulations carried out by avl fire which is coupled with chemical kinetics. The results showed that in the SOIs of 14 deg, 24 deg, and 34 deg bTDC, the fuel is sprayed into the piston bowl; however, in the SOI of 44 deg bTDC, the fuel collides the bowl rim edge, because of the downward movement of the piston. With the advancement of diesel SOI timing from 14 deg to 74 deg bTDC, two different combustion trends can be observed. However, this advancement leads to a lower CO emission, but it raises the CO2 emission level. Although the pressure is a primary parameter for NOx emission, the difference between the trends of NOx and pressure plots indicates that different factors affect the NOx production and also increase the IVC temperature, and raises the in-cylinder pressure, heat release rate, NOx and CO2 emissions, while it reduces the CO emission.


2002 ◽  
Vol 3 (3) ◽  
pp. 171-184 ◽  
Author(s):  
S. R. Krishnan ◽  
M Biruduganti ◽  
Y Mo ◽  
S. R. Bell ◽  
K. C. Midkiff

The influence of engine operating variables on the performance, emissions and heat release in a compression ignition engine operating in normal diesel and dual-fuel modes (with natural gas fuelling) was investigated. Substantial reductions in NOx emissions were obtained with dual-fuel engine operation. There was a corresponding increase in unburned hydrocarbon emissions as the substitution of natural gas was increased. Brake specific energy consumption decreased with natural gas substitution at high loads but increased at low loads. Experimental results at fixed pilot injection timing have also established the importance of intake manifold pressure and temperature in improving dual-fuel performance and emissions at part load.


Sign in / Sign up

Export Citation Format

Share Document