PR30C-LE Locomotive With DOC and Urea Based SCR: Baseline and Initial Aftertreatment Emissions Testing

Author(s):  
Dustin T. Osborne ◽  
Doug Biagini ◽  
Harold Holmes ◽  
Steven G. Fritz ◽  
Michael Jaczola ◽  
...  

The PR30C-LE is a repowered six-axle, 2,240 kW (3,005 hp), line-haul locomotive that was introduced to the rail industry in 2009. The Caterpillar 3516C-HD Tier 2 engine is equipped with an exhaust aftertreatment module containing selective catalyst reduction (SCR) and diesel oxidation catalyst (DOC) technology. PR30C-LE exhaust emission testing was performed on test locomotive PRLX3004. Phase-1 of the test program included the following tasks: engine-out baseline emissions testing without the aftertreatment module installed, aftertreatment module installation, commissioning and degreening, and emissions testing with the aftertreatment. Emission results from testing without the aftertreatment module, referred to as the baseline configuration, indicated that PRLX3004 emissions were below Tier 2 EPA locomotive limits without aftertreatment. Emission test results with the DOC and SCR aftertreatment module showed a reduction in nitrogen oxides (NOx) of 80 percent over the line-haul cycle, and 59 percent over the switcher cycle. Particulate matter (PM) was reduced by 43 percent over the line-haul cycle and 64 percent over the switcher cycle. Line-haul cycle composite emissions of Hydrocarbon (HC) and carbon monoxide (CO) were reduced by 93 and 72 percent, respectively. The PR30C-LE locomotive achieved Tier 4 line-haul NOx, CO, HC, as well as Tier 3 PM levels. There are currently five PR30C-LE locomotives in operation in California and Arizona, and the total hour accumulation of the five PR30C-LE locomotives as of October 2011 was 20,000 hours.

Author(s):  
Dustin T. Osborne ◽  
Doug Biagini ◽  
Harold Holmes ◽  
Steven G. Fritz ◽  
Michael Jaczola ◽  
...  

This paper details part two of the demonstration of a 2,240 kW (3,005 HP) PR30C-LE locomotive with exhaust aftertreatment containing diesel oxidation catalysts (DOC) and urea-based selective catalytic reduction (SCR). The PR30C-LE is a remanufactured and repowered, six-axle, diesel-electric, line-haul locomotive. Program objectives were to measure emission levels of the locomotive and record locomotive and aftertreatment operations during a 12 month revenue service field trial. Phase 1 of the program involved engine baseline emissions testing as well as emissions testing with the aftertreatment at the beginning of its useful life, or the 0-hour condition. Results from Phase 1 showed engine-out emission levels were within U.S. EPA Locomotive Tier 2 limits. With aftertreatment at beginning of useful life, hydrocarbons (HC), carbon monoxide (CO), and oxides of nitrogen (NOx) were below Tier 4 limits, and particulate matter (PM) was below Tier 3 limits. Phase 2 consisted of a 12 month revenue service field trial and additional emissions testing completed at the midpoint and end of the field trial. On-board GPS data, aftertreatment NOx sensor data, and various locomotive operating parameters were logged continuously during the field trial. The field trial data suggests the impact SCR technology has on locomotive NOx emissions is driven primarily by locomotive utilization and loading factor. Overall the field trial included 3,082 hours of operation and PRLX3004 generated approximately 572 MW-hours of work over the 12 month period. Emission test results at the 1,500-hour and 3,000-hour conditions showed very little change from 0-hour test results. Emission levels remained below Tier 4 limits for HC, CO, and NOx, and below the Tier 3 limit for PM. Phase 2 test results suggest there was no significant degradation in emissions performance during the field trial, and no major issues with the locomotive and aftertreatment were detected. In total there are currently five PR30C-LE locomotives in operation within California and Arizona. Together they have completed a cumulative 30,800 hours of revenue service through June 2012 without report of a major issue.


Author(s):  
Steven G. Fritz ◽  
John C. Hedrick ◽  
Tom Weidemann

This paper describes the development of a low emissions upgrade kit for EMD GP20D and GP15D locomotives. These locomotives were originally manufactured in 2001, and met EPA Tier 1 locomotive emission regulations. The 1,491 kW (2,000 HP) EMD GP20D locomotives are powered by Caterpillar 3516B engines, and the 1,119 kW (1,500 HP) EMD GP15D locomotives are powered by Caterpillar 3512B engines. CIT Rail owns a fleet of 50 of these locomotives that are approaching their mid-life before first overhaul. Baseline exhaust emissions testing was followed by a low emissions retrofit development focusing on fuel injection timing, crankcase ventilation filtration, and application of a diesel oxidation catalyst (DOC), and then later a diesel particulate filter (DPF). The result was a EPA Tier 0+ certification of the low emissions upgrade kit, with emission levels below EPA Line-Haul Tier 3 NOx, and Tier 4 HC, CO, and PM levels.


Author(s):  
Dustin T. Osborne ◽  
Steven G. Fritz ◽  
Mike Iden ◽  
Don Newburry

This paper describes the test results of a program to apply an experimental diesel oxidation catalyst (DOC) to a 2,850 kW freight locomotive. Locomotive emissions and fuel consumption measurements were performed on an Electro-Motive Diesel (EMD) model SD60M locomotive, owned by Union Pacific Railroad company, that had been recently rebuilt to EPA Tier 0 exhaust emission certification levels. Emission testing was performed at the Southwest Research Institute (SwRI) Locomotive Exhaust Emissions Test Center in San Antonio, Texas. US EPA-regulated emission levels of hydrocarbons (HC), carbon monoxide (CO), oxides of nitrogen (NOx), and participate (PM) were measured using U.S. EPA locomotive certification test procedures in three configurations; first a baseline with a relatively high sulfur diesel fuel (2,913 ppm sulfur) meeting EPA locomotive certification test specifications, and another baseline using ultra-low sulfur diesel fuel (ULDS), and finally a test using ULSD after the installation of a diesel oxidation catalyst designed and manufactured by MIRATECH Corporation (patent pending). The DOC was applied pre-turbine, within the exhaust manifold due to both space and exhaust temperature considerations. This paper describes the design of the DOC-equipped exhaust manifold, and reports the changes in the regulated exhaust emission levels between the baseline tests and after installation of the DOC. Also described is a locomotive on-board monitoring system used to monitor DOC performance during ongoing revenue service field testing.


2021 ◽  
Vol 23 (4) ◽  
pp. 605-611 ◽  
Author(s):  
Łukasz Rymaniak ◽  
Jerzy Merkisz ◽  
Natalia Szymlet ◽  
Michalina Kamińska ◽  
Sylwester Weymann

The paper presents the proposed proprietary M exhaust emission indicator, which is based on the assumption that CO2 emissions are a measure of the correctness of the combustion process. The measurements were performed using a farm tractor meeting the Tier 3 emission norm, operated in real conditions during plowing work. The tests were carried out for a given land section at three speeds In the analysis of test results, the net engine work was used, as it is carried out in the type approval procedures. When measuring in real operating conditions, the torque read from the OBD system is overstated because it takes into account the engine’s internal resistance. In the analysis of test results, the fuel consumption, emission indicators of gaseous compounds and particulates were determined, and the best conditions for conducting agricultural works were indicated in terms of their impact on the natural environment. The aim of the work is to verify the possibility of determining the emission index for an off-road vehicle and a comparative analysis of its values for various operating parameters of a farm tractor. On this basis, it was found that the lowest values of the M identity were recorded for the test characterized by a vehicle speed of 15 km/h.


Author(s):  
Dustin Osborne ◽  
Steve Fritz ◽  
Doug Glenn

This paper documents exhaust emission test results from a Tier 2 General Electric ES44DC line-haul locomotive with 3,280 kW rated traction power, and the impact of biodiesel fuel blends on regulated exhaust emissions. Baseline exhaust emission testing was performed with a test fuel containing a sulfur concentration of approximately 400 ppm, and was followed by testing of fuel blends containing 2%, 10%, 20%, and 100% soybean derived biodiesel (B2, B10, B20, B100). Gaseous and particulate emissions were sampled per Title 40 of the United States Code of Federal Regulations, Part 92. Test results indicate particulate matter (PM) reductions occurred over the EPA Locomotive Line-Haul and Switch Duty Cycles for each biodiesel blend tested, as compared to the base fuel. The bulk of the PM reduction benefit was present with the 10% biodiesel blend, with comparatively small additional amounts of PM reductions found with increased amounts of biodiesel. PM reduction associated with biodiesel was greater over the Switch Duty Cycle than for the Line-Haul Duty Cycle. The change in cycle weighted oxides of nitrogen (NOx) for B2, B10, and B20 were not greater than the expected test measurement variation; however, B100 increased NOx by nearly 15% over the line-haul cycle. Changes in hydrocarbon (HC) emissions over the duty cycles were within normal test measurement variation except for neat biodiesel, where HC was reduced by 21% and 24% over the Line-Haul and Switch cycles. Carbon Monoxide (CO) reductions of 17% and 24% over the Line-Haul cycle were measured for B20 and B100, as compared to the base fuel. Volumetric fuel consumption increased about 1% for both B2 and B10 blends. Just over 2% increase in volumetric fuel consumption was observed at B20 and nearly 7% increase in volumetric fuel consumption at B100.


Author(s):  
Dustin Osborne ◽  
Steve Fritz ◽  
Doug Glenn

This paper documents the exhaust emission test results from a Tier 2 General Electric ES44DC line-haul locomotive with 3280 kW rated traction power and the impact of biodiesel fuel blends on regulated exhaust emissions. Baseline exhaust emission testing was performed with a test fuel containing a sulfur concentration of approximately 400 ppm and was followed by testing of fuel blends containing 2%, 10%, 20%, and 100% soybean derived biodiesel (B2, B10, B20, and B100). Gaseous and particulate emissions were sampled per Title 40 of the United States Code of Federal Regulations, Part 92. Test results indicate particulate matter (PM) reductions occurred over the Environmental Protection Agency (EPA) locomotive line-haul and switch duty cycles for each biodiesel blend tested, as compared with the base fuel. The bulk of the PM reduction benefit was present with the 10% biodiesel blend, with comparatively small additional amounts of PM reductions found with increased amounts of biodiesel. PM reduction associated with biodiesel was greater over the switch duty cycle than for the line-haul duty cycle. The change in cycle weighted oxides of nitrogen (NOx) for B2, B10, and B20 was not greater than the expected test measurement variation; however, B100 increased NOx by nearly 15% over the line-haul cycle. Changes in hydrocarbon (HC) emissions over the duty cycles were within normal test measurement variation except for neat biodiesel, where HC was reduced by 21% and 24% over the line-haul and switch cycles, respectively. Carbon monoxide reductions of 17% and 24% over the line-haul cycle were measured for B20 and B100, respectively, as compared with the base fuel. Volumetric fuel consumption increased to about 1% for both B2 and B10 blends. Just over 2% increase in volumetric fuel consumption was observed at B20 and nearly 7% increase in volumetric fuel consumption at B100.


2019 ◽  
Vol 178 (3) ◽  
pp. 88-98 ◽  
Author(s):  
Piotr BIELACZYC ◽  
Dariusz KLIMKIEWICZ ◽  
Joseph WOODBURN ◽  
Andrzej SZCZOTKA

The latest legislation regarding the reduction of harmful exhaust emissions, greenhouse gases and fuel consumption determines not only maximum permissible emissions factors, but also emissions testing methods and laboratory design and additionally leads to the development of new research methods. BOSMAL has risen to meet these challenges by investing in an updated, state-of-the-art emissions testing laboratory, housed within a climate chamber and in parallel investing in a completely new laboratory designed with incoming and future legislative requirements in mind. This paper presents BOSMAL’s improved M1/N1 vehicular emissions and fuel consumption laboratory in a climatic chamber and BOSMAL’s standard chamber for the testing of vehicles in accordance with European Union, US and Japanese standards. The specifications, capabilities and design features of the sampling, analysis and development research possi-bilities and climate simulation systems are presented and discussed in relation to the increasing drive for cleaner, light duty road vehi-cles (including hybrids and electric vehicles). The recently-renovated laboratory with extended standard temperature range and the laboratory with climatic chamber are described in the context of the newest European Union legislation on the emission in the range of Euro 6d testing requirements. The laboratories permit BOSMAL’s engineers to compete in the international automotive arena in the development of new, more ecologically friendly and increasingly fuel efficient vehicles.


2011 ◽  
Vol 144 (1) ◽  
pp. 3-12
Author(s):  
Piotr BIELACZYC ◽  
Andrzej SZCZOTKA ◽  
Piotr PAJDOWSKI ◽  
Joseph WOODBURN

Legislation regarding the reduction of harmful exhaust emissions, greenhouse gases and fuel consumption is one of the strongest drivers of development in automobile design. Emissions standards in the European Union (EU), USA and Japan determine not only maximum permissible emissions factors, but also emissions testing methods and laboratory design. BOSMAL has risen to meet these challenges by investing in a new, state-of-the-art emissions testing laboratory, housed within a climate chamber. This paper presents BOSMAL’s new M1/N1 vehicular emissions and fuel consumption laboratory in a climatic chamber for the testing of vehicles in accordance with the Euro 5 & 6 and US Environmental Protection Agency (EPA) & California Air Resources Board (CARB) standards. The specifications, capabilities and design features of the sampling and analysis and climate simulation systems are presented and discussed in relation to the increasing drive for cleaner light duty road vehicles. A recently-installed particle number counting system is described in the context of European Union legislation on the emission of particle matter from CI and SI vehicles. The laboratory permits BOSMAL’s engineers to compete in the international automotive arena in the development and construction of new, more ecologically friendly and increasingly fuel efficient vehicles.


2013 ◽  
Vol 726-731 ◽  
pp. 2234-2240 ◽  
Author(s):  
Di Ming Lou ◽  
Si Li Qian ◽  
Zhi Yuan Hu ◽  
Pi Qiang Tan

In this paper, an experimental investigation was conducted using Vehicle Emission Testing System to study on-road gaseous emissions (CO, THC, NOX, CO2) characteristics based on diesel oxidation catalyst (DOC) and catalyzed diesel particulate filter (CDPF) technology. The results show that after the implementation of DOC + CDPF device, CO, THC emissions are significantly reduced, while the NOX, CO2 emissions remain almost the same. Under steady conditions, the reduction percentages of CO, THC, NOX, CO2 emission factors are 56.0%, 66.0%, 18.3%, 17.5%, respectively. Under transient operation conditions, the reduction percentages of CO, THC, NOX, CO2 emission factors are found to be 43.2%, 65.9%, 13.7%, 10.9%, respectively. Addition to the THC emission factor, the emission factors of CO, NOX and CO2 in transient operation conditions are higher than steady conditions.


Author(s):  
Sujit Ghosh ◽  
Tom Risley ◽  
David Sobolewski ◽  
William Welch ◽  
Sherry Williams

As part of the U.S. Maritime Administration (MARAD) marine application of alternative fuel initiative, the U.S. Navy provided neat hydrotreated renewable diesel (HRD), derived from the hydroprocessing of algal oils, for operational and exhaust emission testing onboard the T/S STATE OF MICHIGAN. This vessel has diesel-electric propulsion with four caterpillar D-398 compression ignition engines; one of these ship service diesel engines was selected as the test engine. The diesel generator sets power both the propulsion motors propelling the ship and provide the electrical power for the hotel loads of the ship. Ultra-low sulfur diesel (ULSD) was blended with the neat HRD fuel in a 50/50-by-volume blend and tested for over 440 hours on the vessel. Exhaust emissions testing was performed while underway on Lake Michigan using the baseline ULSD assessed earlier. A similar profile was run using the blended test fuel. Emission testing was conducted using the ISO 8178 (D2) test cycle. When emissions testing was completed a series of underway and pierside test runs were conducted to accumulate the remaining engine hours, After all testing, the engine conditions were assessed again using a combination of visual inspection and oil analysis. The remainder of the test fuel will be used to conduct a long-term stability test. The setup, test, and results of this testing, currently underway, are reported here with a discussion of MARAD’s alternative fuels test initiative.


Sign in / Sign up

Export Citation Format

Share Document