An Integrated PDMS Microfluidic Device for Dielectrophoretic Separation of Malignant Cells

Author(s):  
Thirukumaran T. Kanagasabapathi ◽  
Colin Dalton ◽  
Karan V. I. S. Kaler

Dielectrophoresis (DEP) has been successfully applied and demonstrated to provide novel and non-invasive means for characterizing, manipulating, trapping, separating and isolating microscopic sized particles, including biological cells. In this article, we report on the design, fabrication and performance of a novel, low cost, integrated Poly(dimethylsiloxane) (PDMS)/DEP microfluidic device capable of controlled manipulation of microscopic sized cells and particles that can be simultaneously utilized both for DEP spectral analysis and cell sorting. We have prototyped microfluidic channels, with DEP microelectrodes incorporated within PDMS channels. Previously, we have evaluated the operation and performance of a prototype device using various dielectric and biological particles, including yeast cells and polystyrene latex beads. In this paper, we report initial experimental observations on malignant cancerous cells. Non-viable cells, due to positive DEP, were attracted to the planar electrodes at frequencies between 200–600 kHz and were clearly repelled from the electrodes, due to negative DEP, at frequencies above 10 MHz.

1998 ◽  
Vol 23 (1) ◽  
pp. 63
Author(s):  
J Bialik ◽  
V Amin ◽  
J W Vilani ◽  
E M Bednarczyk

Life ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1165
Author(s):  
Kristýna Mezerová ◽  
Lubomír Starý ◽  
Pavel Zbořil ◽  
Ivo Klementa ◽  
Martin Stašek ◽  
...  

The frequent occurrence of E. coli positive for cyclomodulins such as colibactin (CLB), the cytotoxic necrotizing factor (CNF), and the cytolethal distending factor (CDT) in colorectal cancer (CRC) patients published so far provides the opportunity to use them as CRC screening markers. We examined the practicability and performance of a low-cost detection approach that relied on culture followed by simplified DNA extraction and PCR in E. coli isolates recovered from 130 CRC patients and 111 controls. Our results showed a statistically significant association between CRC and the presence of colibactin genes clbB and clbN, the cnf gene, and newly, the hemolytic phenotype of E. coli isolates. We also observed a significant increase in the mean number of morphologically distinct E. coli isolates per patient in the CRC cohort compared to controls, indicating that the cyclomodulin-producing E. coli strains may represent potentially preventable harmful newcomers in CRC patients. A colibactin gene assay showed the highest detection rate (45.4%), and males would benefit from the screening more than females. However, because of the high number of false positives, practical use of this marker must be explored. In our opinion, it may serve as an auxiliary marker to increase the specificity and/or sensitivity of the well-established fecal immunochemical test (FIT) in CRC screening.


BioTechniques ◽  
2020 ◽  
Vol 69 (1) ◽  
pp. 46-51
Author(s):  
Jae Bem You ◽  
Byungjin Lee ◽  
Yunho Choi ◽  
Chang-Soo Lee ◽  
Matthias Peter ◽  
...  

Poly(dimethylsiloxane) (PDMS) is widely used as a microfluidics platform material; however, it absorbs various molecules, perturbing specific chemical concentrations in microfluidic channels. We present a simple solution to prevent adsorption into a PDMS microfluidic device. We used a vapor-phase-deposited nanoadhesive layer to seal PDMS microfluidic channels. Absorption of fluorescent molecules into PDMS was efficiently prevented in the nanolayer-treated PDMS device. Importantly, when cultured in a nanolayer-treated PDMS device, yeast cells exhibited the expected concentration-dependent response to a mating pheromone, including mating-specific morphological and gene expression changes, while yeast cultured in an untreated PDMS device did not properly respond to the pheromone. Our method greatly expands microfluidic applications that require precise control of molecule concentrations.


2021 ◽  
Author(s):  
Victor Sadanory Takekawa ◽  
Letícia Aparecida Marques ◽  
Ethan Strubinger ◽  
Thiago Pinotti Segato ◽  
Stanislau Bogusz Junior ◽  
...  

2015 ◽  
Vol 11 (1) ◽  
pp. 2897-2908
Author(s):  
Mohammed S.Aljohani

Tomography is a non-invasive, non-intrusive imaging technique allowing the visualization of phase dynamics in industrial and biological processes. This article reviews progress in Electrical Capacitance Volume Tomography (ECVT). ECVT is a direct 3D visualizing technique, unlike three-dimensional imaging, which is based on stacking 2D images to obtain an interpolated 3D image. ECVT has recently matured for real time, non-invasive 3-D monitoring of processes involving materials with strong contrast in dielectric permittivity. In this article, ECVT sensor design, optimization and performance of various sensors seen in literature are summarized. Qualitative Analysis of ECVT image reconstruction techniques has also been presented.


Author(s):  
José Capmany ◽  
Daniel Pérez

Programmable Integrated Photonics (PIP) is a new paradigm that aims at designing common integrated optical hardware configurations, which by suitable programming can implement a variety of functionalities that, in turn, can be exploited as basic operations in many application fields. Programmability enables by means of external control signals both chip reconfiguration for multifunction operation as well as chip stabilization against non-ideal operation due to fluctuations in environmental conditions and fabrication errors. Programming also allows activating parts of the chip, which are not essential for the implementation of a given functionality but can be of help in reducing noise levels through the diversion of undesired reflections. After some years where the Application Specific Photonic Integrated Circuit (ASPIC) paradigm has completely dominated the field of integrated optics, there is an increasing interest in PIP justified by the surge of a number of emerging applications that are and will be calling for true flexibility, reconfigurability as well as low-cost, compact and low-power consuming devices. This book aims to provide a comprehensive introduction to this emergent field covering aspects that range from the basic aspects of technologies and building photonic component blocks to the design alternatives and principles of complex programmable photonics circuits, their limiting factors, techniques for characterization and performance monitoring/control and their salient applications both in the classical as well as in the quantum information fields. The book concentrates and focuses mainly on the distinctive features of programmable photonics as compared to more traditional ASPIC approaches.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1178 ◽  
Author(s):  
Jorge Prada ◽  
Christina Cordes ◽  
Carsten Harms ◽  
Walter Lang

This contribution outlines the design and manufacturing of a microfluidic device implemented as a biosensor for retrieval and detection of bacteria RNA. The device is fully made of Cyclo-Olefin Copolymer (COC), which features low auto-fluorescence, biocompatibility and manufacturability by hot-embossing. The RNA retrieval was carried on after bacteria heat-lysis by an on-chip micro-heater, whose function was characterized at different working parameters. Carbon resistive temperature sensors were tested, characterized and printed on the biochip sealing film to monitor the heating process. Off-chip and on-chip processed RNA were hybridized with capture probes on the reaction chamber surface and identification was achieved by detection of fluorescence tags. The application of the mentioned techniques and materials proved to allow the development of low-cost, disposable albeit multi-functional microfluidic system, performing heating, temperature sensing and chemical reaction processes in the same device. By proving its effectiveness, this device contributes a reference to show the integration potential of fully thermoplastic devices in biosensor systems.


1987 ◽  
Vol 14 (3) ◽  
pp. 134-140 ◽  
Author(s):  
K.A. Clarke

Practical classes in neurophysiology reinforce and complement the theoretical background in a number of ways, including demonstration of concepts, practice in planning and performance of experiments, and the production and maintenance of viable neural preparations. The balance of teaching objectives will depend upon the particular group of students involved. A technique is described which allows the embedding of real compound action potentials from one of the most basic introductory neurophysiology experiments—frog sciatic nerve, into interactive programs for student use. These retain all the elements of the “real experiment” in terms of appearance, presentation, experimental management and measurement by the student. Laboratory reports by the students show that the experiments are carefully and enthusiastically performed and the material is well absorbed. Three groups of student derive most benefit from their use. First, students whose future careers will not involve animal experiments do not spend time developing dissecting skills they will not use, but more time fulfilling the other teaching objectives. Second, relatively inexperienced students, struggling to produce viable neural material and master complicated laboratory equipment, who are often left with little time or motivation to take accurate readings or ponder upon neurophysiological concepts. Third, students in institutions where neurophysiology is taught with difficulty because of the high cost of equipment and lack of specific expertise, may well have access to a low cost general purpose microcomputer system.


2021 ◽  
Vol 11 (6) ◽  
pp. 2535
Author(s):  
Bruno E. Silva ◽  
Ramiro S. Barbosa

In this article, we designed and implemented neural controllers to control a nonlinear and unstable magnetic levitation system composed of an electromagnet and a magnetic disk. The objective was to evaluate the implementation and performance of neural control algorithms in a low-cost hardware. In a first phase, we designed two classical controllers with the objective to provide the training data for the neural controllers. After, we identified several neural models of the levitation system using Nonlinear AutoRegressive eXogenous (NARX)-type neural networks that were used to emulate the forward dynamics of the system. Finally, we designed and implemented three neural control structures: the inverse controller, the internal model controller, and the model reference controller for the control of the levitation system. The neural controllers were tested on a low-cost Arduino control platform through MATLAB/Simulink. The experimental results proved the good performance of the neural controllers.


Sign in / Sign up

Export Citation Format

Share Document