Analysis and Research on Natural Circulation Capacity of HFETR

Author(s):  
Taozhong Xu ◽  
Caiyu Deng ◽  
Yuxin Xiang

Natural circulation is being used as an important circulation to remove reactor residual heat. In the core of High Flux Engineering Trial Reactor of China (HFETR), the coolant is driven by pumps normally and flows from upside to downside in the core. When HFETR is shut down or runs in low power, the natural circulation between the hot water in the core and the cold water in the reflector inside the pressure vessel is established to cool down the core. Since the natural circulation processed only in the pressure vessel, the accident pumps need to be turned on periodically to remove reactor residual heat. The inversion of flow direction in HFETR and internal natural circulation lead to a different natural circulation establishment process from traditional reactor in which coolant flows form down to top normally. In this paper the transition between the natural circulation and forced circulation is analyzed by RELAP5/MOD3 code. The results showed that the accident pump could be turned off in the power of 850kW; The time, at which the accident pump needs to be turned on to transit the natural circulation to forced circulation, is decided by the temperature of the water in top of pressure vessel, and a formula between temperature of the water in the top of pressure vessel and the reactor power was obtained. The research results have theoretical and practical value to the full use of the natural circulation ability, as well as the safety of the engineering reactors or similar test facilities.

Author(s):  
Tomohisa Kurita ◽  
Mitsuo Komuro ◽  
Ryo Suzuki ◽  
Masato Yamada ◽  
Mika Tahara ◽  
...  

It is necessary to stabilize high temperature molten core in a severe accident for long time without electrical power. The core-catcher is to be installed at the bottom of the lower drywell in order to settle the molten core flowing down from a reactor vessel. Toshiba’s core-catcher system consists of a round basin made up of inclined cooling channels to get natural circulation of the flooding water. So it can cover all pedestal floor and can work in passive manner. We have been confirming an applicability of the core-catcher to actual plants. We have conducted full scaled tests with a unique cooling channel which has inclined rectangular flow section and changing the section area along flow direction in several conditions to evaluate the influence of the parameters on the natural circulation and heat removal capability. The test results showed good heat removal performance with nucleate boiling. However, we should consider a transformation of the cooling channel, for example, by the falling corium. So we calculate the assumed transformation of the cooling channel and conduct natural circulation tests with obstruction in the cooling channel. We confirm that natural circulation flow is stably continues and the cooling channel can remove prescribed heat, even if a flow area have got narrow locally.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5410
Author(s):  
Muhammad Hashim ◽  
Liangzhi Cao ◽  
Shengcheng Zhou ◽  
Rubing Ma ◽  
Yiqiong Shao ◽  
...  

In this study, a conceptual design was developed for a lead-bismuth-cooled small modular fast reactor SPARK-NC with natural circulation and load following capabilities. The nominal rated power was set to 10 MWe, and the power can be manipulated from 5 MWe to 10 MWe during the whole core lifetime. The core of the SPARK-NC can be operated for eight effective full power years (EFPYs) without refueling. The core neutronics and thermal-hydraulics design calculations were performed using the SARAX code and the natural circulation capability of the SPARK-NC was investigated by employing the energy conservation equation, pressure drop equation and quasi-static reactivity balance equation. In order to flatten the radial power distribution, three radial zones were constructed by employing different fuel enrichments and fuel pin diameters. To provide an adequate shutdown margin, two independent systems, i.e., a control system and a scram system, were introduced in the core. The control assemblies were further classified into two types: primary control assemblies used for reactivity control and power flattening and secondary control assemblies (with relatively smaller reactivity worth) used for power regulation. The load following capability of SPARK-NC was assessed using the quasi-static reactivity balance method. By comparing three possible approaches for adjusting the reactor power output, it was shown that the method of adjusting the coolant inlet temperature was viable, practically easy to implement and favored for the load following operation.


Author(s):  
Thomas Ho¨hne ◽  
So¨ren Kliem ◽  
Ulrich Rohde ◽  
Frank-Peter Weiß

Coolant mixing in the cold leg, downcomer and the lower plenum of pressurized water reactors is an important phenomenon mitigating the reactivity insertion into the core. Therefore, mixing of the de-borated slugs with the ambient coolant in the reactor pressure vessel was investigated at the four loop 1:5 scaled ROCOM mixing test facility. Thermal hydraulics analyses showed, that weakly borated condensate can accumulate in particular in the pump loop seal of those loops, which do not receive safety injection. After refilling of the primary circuit, natural circulation in the stagnant loops can re-establish simultaneously and the de-borated slugs are shifted towards the reactor pressure vessel (RPV). In the ROCOM experiments, the length of the flow ramp and the initial density difference between the slugs and the ambient coolant was varied. From the test matrix experiments with 0 resp. 2% density difference between the de-borated slugs and the ambient coolant were used to validate the CFD software ANSYS CFX. To model the effects of turbulence on the mean flow a higher order Reynolds stress turbulence model was employed and a mesh consisting of 6.4 million hybrid elements was utilized. Only the experiments and CFD calculations with modeled density differences show a stratification in the downcomer. Depending on the degree of density differences the less dense slugs flow around the core barrel at the top of the downcomer. At the opposite side the lower borated coolant is entrained by the colder safety injection water and transported to the core. The validation proves that ANSYS CFX is able to simulate appropriately the flow field and mixing effects of coolant with different densities.


2019 ◽  
Vol 800 ◽  
pp. 289-292
Author(s):  
Andrejs Shishkin ◽  
Ieva Stafecka

The present study describes ice characterization technique by utilizing light microscopy. Two different optical setups were used and compared. For ice structure characterization, ice was formed by adding water to an ice base layer: pouring hot water (+20 °C), pouring cold water (+3 °C) and spraying of hot water (+20 °C) water. Ice substrate specimens were made (20 x 30 x 20 mm prepared in a polypropylene mould) at -20 °C for 48 h. The heat flow direction governed the orientation of the air bubbles, and set the inner structure of ice. Pouring hot water onto ice slowly solidified the top layer and created channel-like pores perpendicular to the top surface, but cold water quickly solidified the top layer and created chaotically oriented air bubbles.


2021 ◽  
Vol 69 (4) ◽  
pp. 132
Author(s):  
Yan Yan ◽  
Liyan Zhang ◽  
Yuhan Li ◽  
Xiangyu Xu ◽  
Zhencheng Jiang ◽  
...  

In this paper, the typical system of solar energy system: natural circulation system and forced circulation system are analyzed. The two systems are simulated on the TRNSYS platform, and the configuration of the system itself has been discussed. The purpose is to provide reference for the scientific implementation of solar energy architecture integration. On the basis of summarizing the solar energy construction technology, the natural circulation system and the forced circulation system of solar hot water system have been discussed emphatically. The simulation experiment is designed on the TRNSYS platform. The influence of different heat collection area and water tank volume on solar energy guarantee rate and system efficiency has been discussed by simulation data. Finally, the optimal allocation scheme of natural constraints of natural circulation and forced circulation has been obtained.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Kwon-Yeong Lee ◽  
Hyun-Gi Yoon

In an open-pool type research reactor, the primary cooling system can be designed to have a downward flow inside the core during normal operation because of the plate type fuel geometry. There is a flow inversion inside the core from the downward flow by the inertia force of the primary coolant to the upward flow by the natural circulation when the pump is turned off. To delay the flow inversion time, an innovative passive system with pump flywheel and GCCT is developed to remove the residual heat. Before the primary cooling pump starts up, the water level of the GCCT is the same as that of the reactor pool. During the primary cooling pump operation, the water in the GCCT is moved into the reactor pool because of the pump suction head. After the pump stops, the potential head generates a downward flow inside the core by moving the water from the reactor pool to the GCCT and removes the residual heat. When the water levels of the two pools are the same again, the core flow has an inversion of the flow direction, and natural circulation is developed through the flap valves.


Author(s):  
Dario F. Delmastro ◽  
Luciano Patruno ◽  
Viviana Masson

In this paper the use of jet pumps for assissting the coolant circulation in a integral pressure water reactor is considered. The integral pressure water reactors are characterized by the presence of all high pressure and temperature components inside a single pressure vessel. In this way the core, steam generators, pressurizer and pumps are located inside the same pressure vessel. This kind of systems usually consider natural circulation for the low power modules and forced circulation for the high power ones. CAREM-25 is the prototype reactor of CAREM design. It is a 100 MW thermal power integral pressure water reactor that use natural circulation in the primary circuit. The possibility, advantages and constraints, of using jet pumps for assissting the primary flow circulation and increase the reactor power are analyzed.


Author(s):  
Ladislav Vyskocil

Recently, the safety analyses of VVER and PWR reactors have dealt with the possibility of reactivity-induced accidents related to the penetration of a water slug with low boron concentration into the reactor core. Loop seals at the reactor coolant pump (RCP) suction are the most likely places for the formation of these slugs. The slug is formed in the loop when there is neither natural nor forced circulation. When the circulation is restored, the slug travels towards the reactor and causes an insertion of positive reactivity in the core. This report deals with a CFD simulation of the most dangerous event—the start-up of the first RCP. Only several seconds are needed for slug to reach the core and the operator has no time for corrective action. Mixing of slug on its way to the core can reduce the danger of core recriticality. The primary objective of this study was to find out whether the FLUENT 6 CFD code is capable of predicting the mixing in the cold leg, downcomer and lower plenum as the slug moves toward the reactor core. Numerical simulations were based on mixing tests performed on 1:5 scale model of VVER-1000 reactor at the Gidropress Design Bureau, Russia. In the physical mixing tests, temperature was substituted for Boron concentration through the use of hot and cold water. The time history of core inlet average temperature was calculated by FLUENT and was found to be in good qualitative agreement with experimental data. This work was carried out as part of the EU project FLOMIX-R, Work Package 4.


1976 ◽  
Vol 16 (03) ◽  
pp. 137-146 ◽  
Author(s):  
N. Arihara ◽  
H.J. Ramey ◽  
W.E. Brigham

Abstract This study concerns nonisothermal single- and two-phase flow of a single-component fluid (water) in consolidated porous media. Linear flow experiments through cylindrical consolidated cores were performed. Both natural (Berea) and synthetic cement-consolidated performed. Both natural (Berea) and synthetic cement-consolidated sand cores were used. Fabrication of the synthetic sandstones was important to permit reproducible fabrication of high-porosity, low-permeability sandstones with thermowells, pressure ports, and glass-tube capacitance probe guides cast in place. Both hot-fluid and cold-water injection experiments were carried out in natural and synthetic sandstones. The thermal efficiency of hot-water and cold-water injection was found to depend on heat injection rate: the higher the heat injection rate, the higher the thermal efficiency. One important result of this study is that much of the previous work with nonisothermal single-phase flow in unconsolidated sands may be extended to consolidated sandstones despite the differences in the isothermal flow characteristics of these systems. In two-phase boiling flow experiments, hot, compressed liquid water entered the upstream end of the core, moved downstream, started vaporizing, and flowed through the remainder of the core as a mixture of steam and liquid water. Significant decreases in both temperature and pressure occurred within the two-phase region. Even for large temperature changes, it was found that two-phase flow can be nearly isenthalpic and steady state if heat transfer between the core and the surroundings is at a low level. Introduction Geothermal energy is being given much attention as a new source of energy. Prime questions in geothermal energy extraction are (1) how much energy can be recovered, and (2) how fast can it be extracted? To find useful answers to these questions, the basic nature of the boiling flow of water in porous media must be understood. Literature on oil recovery by hot-fluid injection and underground combustion presents some of the important features of nonisothermal, two-phase flow that appear pertinent to geothermal reservoirs. The injection of hot water to effect oil recovery was commonly considered before 1930. In 1930, Barb and Shelley mentioned a rumor that hot-water flooding had been tried in New York State and abandoned because of excessive cost. The heating and economic results of hot-water injection were evaluated in this pioneering study. pioneering study. The next study of heat transport in a formation caused by hot-fluid injection was presented by Stovall in 1934. Both laboratory and field experiments were described. Field determination of both wellbore heat losses and vertical losses from a heated formation were described in this remarkable study. Apparently, the next study of vertical heat loss on hot-fluid injection was published by Lauwerier in 1955. It was assumed that injection rate, Vw, and temperature, Ti, would remain constant; thermal conductivity in the direction of flow was zero; and the thermal conductivity in the flooded layer perpendicular to the direction of flow was infinite so that the temperature in the flooded layer, T1, was always constant at a given location in the flooded zone. Prats has called the latter condition the "Lauwerier assumption." The conductivity in the overburden and underburden, 2, was assumed to be finite and constant. The loss of heat from the injected fluid to the adjacent strata resulted in a decrease in temperature in the direction of flow. Lauwerier derived the temperature both in the injection interval and the adjacent strata as a function of time and distance. In 1959, Marx and Langenheim presented a solution for a heat-loss problem related to the one considered by Lauwerier, but where the heated region remained at a constant temperature equal to the injection temperature. Vertical heat loss reduced the size of the heated region. SPEJ P. 137


2011 ◽  
Vol 2 (1) ◽  
pp. 13-17
Author(s):  
I. David ◽  
M. Visescu

Abstract Geothermal energy source is the heat from the Earth, which ranges from the shallow ground (the upper 100 m of the Earth) to the hot water and hot rock which is a few thousand meters beneath the Earth's surface. In both cases the so-called open systems for geothermal energy resource exploitation consist of a groundwater production well to supply heat energy and an injection well to return the cooled water, from the heat pump after the thermal energy transfer, in the underground. In the paper an analytical method for a rapid estimation of the ground water flow direction effect on the coupled production well and injection well system will be proposed. The method will be illustrated with solutions and images for representative flow directions respect to the axis of the production/injection well system.


Sign in / Sign up

Export Citation Format

Share Document