Experimental and Numerical Simulation on Hydraulic Behavior of Molten Flow in the Lower Part in Reactor Core

Author(s):  
Kota Matsuura ◽  
Hideaki Monji ◽  
Susumu Yamashita ◽  
Hiroyuki Yoshida

In the decommissioning work of nuclear power plants, it is important to grasp the sedimentation place of molten materials. However, the technique to grasp exactly sedimentation place is not established now. Therefore, the detailed and phenomenological numerical simulation code named JUPITER for predicting the molten core behavior is developed. In the study, visualization experiment and numerical simulation were performed to validate the applicability of the JUPITER to the hydraulic relocation behavior in core internals. The test section used in this experiment simulated the structure of the core internals, such as a control rod and a fuel support piece, simply. The working fluid is water under the atmospheric pressure. The experiment uses a high-speed video camera to visualize the flow behavior. The behavior and the speed of the liquid film in a narrow flow channel is obtained. For the numerical analysis carried out prior to the experiment, the behavior of flow down liquid was shown. The typical behavior was also observed that the tip of a liquid film flowing down splits into.

Author(s):  
Longkun He ◽  
Pengfei Liu ◽  
Xisi Zhang ◽  
Wenjun Hu ◽  
Bo Kuang ◽  
...  

In nuclear power plants, fuel-coolant interaction (FCI) often accompanied with core melt accidents, which may escalate to steam explosion destroying the integrity of structural components and even the containment under certain conditions. In the present study, a new facility for intermediate-scaled experiments named ‘Test for Interaction of MELt with Coolant’ (TIMELCO) has been set up to study FCI phenomena and thermal-hydraulic influence factors in metal or metallic oxide/water mixtures with melt at maximum 2750°C. The first series of tests was performed using 3kg of Sn which was heated to 800°Cand jetted into a column of 1m water depth (300mm in diameter) under 0.1MPa ambient pressure. The main changing parameter was water temperature, at 60 °C and 72 °C respectively. From the high-speed video camera, violent explosion phenomenon occurred at water temperature of 60°C, while no evident explosion observed at 72°C. The size of melt debris at 60°C is smaller than this at 72°C.On the contrary, the dynamic pressure at 60°C is larger. The results indicate that water temperature has an important effect on FCI and decreasing the temperature of the coolant is advantageous to the explosion.


Author(s):  
Yoshiteru Komuro ◽  
Zensaku Kawara ◽  
Tomoaki Kunugi

Flow-induced vibrations are important problems in nuclear power plants from the view point of reactor safety. In the investigations of these vibrations especially those induced by two-phase flows, a numerical simulation plays a significant role, so it is necessary to obtain the experimental datasets that can validate the results of the numerical simulation. This paper deals with the experimental data of one-end-supported rod vibration, and focuses on the differences between the rod vibrations induced by single-phase air flows and those induced by droplet two-phase flows. In the experiments, the displacement of the non-supported end of the test rod was visualized by the high speed camera with high spatial and temporal resolutions, namely 9.5 μm and 500 μsec. Using an image analyzing software, the rod vibration displacements were measured by the motion tracking method. The curved surface of the rod was observed by another high speed camera and the relationship between the rod vibrations and the wet condition on the surface of the rod was investigated. In addition, the vibrations measured by the strain gages and those by the high speed camera were compared to discuss the differences in these two ways of the measurements.


2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Mustafa Alper Yildiz ◽  
Gerrit Botha ◽  
Haomin Yuan ◽  
Elia Merzari ◽  
Richard C. Kurwitz ◽  
...  

Abstract The proposition for molten salt and high-temperature gas-cooled reactors has increased the focus on the dynamics and physics in randomly packed pebble beds. Research is being conducted on the validity of these designs as a possible contestant for the fourth-generation nuclear power systems. A detailed understanding of the coolant flow behavior is required in order to ensure proper cooling of the reactor core during normal and accident conditions. In order to increase the understanding of the flow through these complex geometries and enhance the accuracy of lower-fidelity modeling, high-fidelity approaches such as direct numerical simulation (DNS) can be utilized. Nek5000, a spectral-element computational fluid dynamics (CFD) code, was used to develop DNS fluid flow data. The flow domain consisted of 147 pebbles enclosed by a bounding wall. In the work presented, the Reynolds numbers ranged from 430 to 1050 based on the pebble diameter and inlet velocity. Characteristics of the flow domain such as volume averaged porosity, axial porosity, and radial porosity were studied and compared with correlations available in the literature. Friction factors from the DNS results for all Reynolds numbers were compared with correlations in the literature. The first- and second-order statistics show good agreement with the available experimental data. Turbulence length scales were analyzed in the flow. Reynolds stress anisotropy was characterized by utilizing invariant analysis. Overall, the results of the analysis in this study provide deeper understanding of the flow behavior and the effect of the wall in packed beds.


Author(s):  
Xing Li ◽  
Sichao Tan ◽  
Zhengpeng Mi ◽  
Peiyao Qi ◽  
Yunlong Huang

Thermal hydraulic research of reactor core is important in nuclear energy applications, the flow and heat transfer characteristics of coolant in reactor fuel assembly has a great influence on the performance and safety of nuclear power plants. Particle image velocimetry (PIV) and Laser induced fluorescence (LIF) are the instantaneous, non-intrusive, whole-field fluid mechanics measuring method. In this study, the simultaneous measurement of flow field and temperature field for a rod bundle was conducted using PIV and LIF technique. A facility system, utilizing the matching index of refraction approach, has been designed and constructed for the measurement of velocity and temperature in the rod bundle. In order for further study on complex heat and mass transfer characteristic of rod bundle, the single-phase experiments on the heating conditions are performed. One of unique characteristics of the velocity and temperature distribution downstream the spacer grid was obtained. The experimental results show that the combined use of PIV and LIF technique is applied to the measurement of multi-physical field in a rod bundle is feasible, the measuring characteristics of non-intrusive ensured accuracy of whole field data. The whole field experimental data obtained in rod bundle benefits the design of spacer grid geometry.


Author(s):  
Dean Deng ◽  
Kazuo Ogawa ◽  
Nobuyoshi Yanagida ◽  
Koichi Saito

Recent discoveries of stress corrosion cracking (SCC) at nickel-based metals in pressurized water reactors (PWRs) and boiling water reactors (BWRs) have raised concerns about safety and integrity of plant components. It has been recognized that welding residual stress is an important factor causing the issue of SCC in a weldment. In this study, both numerical simulation technology and experimental method were employed to investigate the characteristics of welding residual stress distribution in several typical welded joints, which are used in nuclear power plants. These joints include a thick plate butt-welded Alloy 600 joint, a dissimilar metal J-groove set-in joint and a dissimilar metal girth-butt joint. First of all, numerical simulation technology was used to predict welding residual stresses in these three joints, and the influence of heat source model on welding residual stress was examined. Meanwhile, the influence of other thermal processes such as cladding, buttering and heat treatment on the final residual stresses in the dissimilar metal girth-butt joint was also clarified. Secondly, we also measured the residual stresses in three corresponding mock-ups. Finally, the comparisons of the simulation results and the measured data have shed light on how to effectively simulate welding residual stress in these typical joints.


Author(s):  
Thomas G. Scarbrough

In a series of Commission papers, the U.S. Nuclear Regulatory Commission (NRC) described its policy for inservice testing (IST) programs to be developed and implemented at nuclear power plants licensed under 10 CFR Part 52. This paper discusses the expectations for IST programs based on those Commission policy papers as applied in the NRC staff review of combined license (COL) applications for new reactors. For example, the design and qualification of pumps, valves, and dynamic restraints through implementation of American Society of Mechanical Engineers (ASME) Standard QME-1-2007, “Qualification of Active Mechanical Equipment Used in Nuclear Power Plants,” as accepted in NRC Regulatory Guide (RG) 1.100 (Revision 3), “Seismic Qualification of Electrical and Active Mechanical Equipment and Functional Qualification of Active Mechanical Equipment for Nuclear Power Plants,” will enable IST activities to assess the operational readiness of those components to perform their intended functions. ASME has updated the Operation and Maintenance of Nuclear Power Plants (OM Code) to improve the IST provisions for pumps, valves, and dynamic restraints that are incorporated by reference in the NRC regulations with applicable conditions. In addition, lessons learned from performance experience and testing of motor-operated valves (MOVs) will be implemented as part of the IST programs together with application of those lessons learned to other power-operated valves (POVs). Licensee programs for the Regulatory Treatment of Non-Safety Systems (RTNSS) will be implemented for components in active nonsafety-related systems that are the first line of defense in new reactors that rely on passive systems to provide reactor core and containment cooling in the event of a plant transient. This paper also discusses the overlapping testing provisions specified in ASME Standard QME-1-2007; plant-specific inspections, tests, analyses, and acceptance criteria; the applicable ASME OM Code as incorporated by reference in the NRC regulations; specific license conditions; and Initial Test Programs as described in the final safety analysis report and applicable RGs. Paper published with permission.


2021 ◽  
Vol 30 (5) ◽  
pp. 66-75
Author(s):  
S. A. Titov ◽  
N. M. Barbin ◽  
A. M. Kobelev

Introduction. The article provides a system and statistical analysis of emergency situations associated with fires at nuclear power plants (NPPs) in various countries of the world for the period from 1955 to 2019. The countries, where fires occurred at nuclear power plants, were identified (the USA, Great Britain, Switzerland, the USSR, Germany, Spain, Japan, Russia, India and France). Facilities, exposed to fires, are identified; causes of fires are indicated. The types of reactors where accidents and incidents, accompanied by large fires, have been determined.The analysis of major emergency situations at nuclear power plants accompanied by large fires. During the period from 1955 to 2019, 27 large fires were registered at nuclear power plants in 10 countries. The largest number of major fires was registered in 1984 (three fires), all of them occurred in the USSR. Most frequently, emergency situations occurred at transformers and cable channels — 40 %, nuclear reactor core — 15 %, reactor turbine — 11 %, reactor vessel — 7 %, steam pipeline systems, cooling towers — 7 %. The main causes of fires were technical malfunctions — 33 %, fires caused by the personnel — 30 %, fires due to short circuits — 18 %, due to natural disasters (natural conditions) — 15 % and unknown reasons — 4 %. A greater number of fires were registered at RBMK — 6, VVER — 5, BWR — 3, and PWR — 3 reactors.Conclusions. Having analyzed accidents, involving large fires at nuclear power plants during the period from 1955 to 2019, we come to the conclusion that the largest number of large fires was registered in the USSR. Nonetheless, to ensure safety at all stages of the life cycle of a nuclear power plant, it is necessary to apply such measures that would prevent the occurrence of severe fires and ensure the protection of personnel and the general public from the effects of a radiation accident.


2005 ◽  
Vol 2005 (1) ◽  
pp. 77-89 ◽  
Author(s):  
W. Chon ◽  
R. S. Amano

When the airflow patterns inside a lawn mower deck are understood, the deck can be redesigned to be efficient and have an increased cutting ability. To learn more, a combination of computational and experimental studies was performed to investigate the effects of blade and housing designs on a flow pattern inside a1.1mwide corotating double-spindle lawn mower deck with side discharge. For the experimental portion of the study, air velocities inside the deck were measured using a laser Doppler velocimetry (LDV) system. A high-speed video camera was used to observe the flow pattern. Furthermore, noise levels were measured using a sound level meter. For the computational fluid dynamics (CFD) work, several arbitrary radial sections of a two-dimensional blade were selected to study flow computations. A three-dimensional, full deck model was also developed for realistic flow analysis. The computational results were then compared with the experimental results.


Author(s):  
P. Papadopoulos ◽  
T. Lind ◽  
H.-M. Prasser

After the accident in the Fukushima Daiichi nuclear power plant, the interest of adding Filtered Containment Venting Systems (FCVS) on existing nuclear power plants to prevent radioactive releases to the environment during a severe accident has increased. Wet scrubbers are one possible design element which can be part of an FCVS system. The efficiency of this scrubber type is thereby depending, among others, on the thermal-hydraulic characteristics inside the scrubber. The flow structure is mainly established by the design of the gas inlet nozzle. The venturi geometry is one of the nozzle types that can be found in nowadays FCVS. It acts in two different steps on the removal process of the contaminants in the gas stream. Downstream the suction opening in the throat of the venturi, droplets are formed by atomization of the liquid film. The droplets are contributing to the capture of aerosols and volatile gases from the mixture coming from the containment. Studies state that the majority of the contaminants is scrubbed within this misty flow regime. At the top of the venturi, the gas stream is injected into the pool. The pressure drop at the nozzle exit leads to the formation of smaller bubbles, thus increasing the interfacial area concentration in the pool. In this work, the flow inside a full-scale venturi scrubber has been optically analyzed using shadowgraphy with a high-speed camera. The venturi nozzle was installed in the TRISTAN facility at PSI which was originally designed to investigate the flow dynamics of a tube rupture inside a full-length scale steam generator tube bundle. The data analysis was focused on evaluating the droplet size distribution and the Sauter mean diameter under different gas flow rates and operation modes. The scrubber was operated in two different ways, submerged and unsubmerged. The aim was to include the effect on the droplet sizes of using the nozzle in a submerged operation mode.


Sign in / Sign up

Export Citation Format

Share Document