Effect on the Film Pressure Distribution on a Hydrodynamic Tilting Pad Bearing Caused by the Coating of the Journal With DLC by Triboadhesion

Author(s):  
J. M. Rodri´guez-Lelis ◽  
D. Vela-Arvizo ◽  
A. Abundez-Pliego ◽  
S. Reyes-Galindo ◽  
J. Navarro-Torres ◽  
...  

This work is concerned with the effect on the film pressure distribution caused on a hydrodynamic tilting pad bearing, by the change in surface properties of the journal. Here two identical journals, both manufactured with AISI 9840, were employed. One of them was coated with DLC by the triboadhesion process, and the second, was used as a reference without applying any coating. During tests, the tilting pad experienced a lower film pressure distribution when the journal coated with DLC was employed. This phenomena could readily be attributed to the different surface energies of the coated and uncoated journals, which in time causes that the fluid film characteristics to be modified by the reduction of the shear stresses at the wall, thus reducing the maximum film pressure measured and shifting the maximum pressure to the line of symmetry, drawn from the center of the journal to the pin of rotation of the tilting pad.

Author(s):  
Guoqiang Hou ◽  
Hua Su ◽  
Yuhui Huang ◽  
Congcong Chen

To improve the weaknesses of large leakage and wear of dual-rotor intershaft labyrinth seal in aero-engines, the cylindrical gas film seal of metal rubber with a compliant feature is proposed to substitute this conventional seal. According to the dual-rotor operating condition, an analysis method of gas film pressure is presented considering the complex condition of rotor tilt, centrifugal expansion effect, and rotor circular precession. The characteristics of gas film pressure distribution are computed and comparisons are conducted in a complex operating state that the tilt rotor is in forward/backward circular precession under a homodromous/counter-rotating condition with/without the influence of centrifugal expansion. Besides, the formation mechanism of the gas film pressure caused by rotor rotational direction and circular precession direction is revealed. Also, the influence of rotor speed and seal ring speed on gas film pressure is analyzed when the rotor is tilted. The results indicate that for the dual-rotor cylindrical gas film seal with high rotating speed, the rotor tilt and centrifugal expansion effect have significant influence on the gas film pressure distribution, and the rotors’ rotational direction as well as rotor circular precession direction determines the maximum gas film pressure distribution area. The maximum pressure under a homodromous condition with backward precession is the highest; the maximum pressure under a homodromous condition with forward precession is the lowest. The former is 1.33% and 1.68% higher than the latter, respectively, with/without consideration of centrifugal expansion. The study method, which is generally suitable for the cylindrical gas film seal with single-rotor/dual-rotor, lays the foundation of performance analysis under complex operating conditions.


2013 ◽  
Vol 315 ◽  
pp. 889-893
Author(s):  
Asral Asral ◽  
Jamaluddin Md Sheriff ◽  
Kahar Osman

The ability of bearing liner to maintain the fluid film lubrication is crucial to its performance. This study is to investigate the pressure distribution for full film lubrication of wavy bearing liner. The results were compared to that from smooth bearing liner. These bearings were used with the palm oil based lubricant. CFD analysis was developed to determine the numerical data. A 60 mm bearing with ratio 0.5 of its diameter to length is simulated. This bearing has 250 µm in clearance and 200 µm in amplitude with semi rectangular circumferential surface waviness liner in shape. Pressure distribution of the bearing was influenced by the increment of the eccentricity ratio and the speed of shaft. The surface waviness liner bearing produces higher in pressure by comparing it with the smooth bearing. The maximum pressure was noted in the vicinity of minimum fluid film thickness where it was distributed at the area around the peak of wave.


1994 ◽  
Vol 116 (3) ◽  
pp. 597-605 ◽  
Author(s):  
D. H. Gibson ◽  
P. J. Dionne ◽  
A. K. Singhal

This paper describes a numerical model developed to predict the elastohydrodynamic (coupled solid-fluid) response of unit injector fuel systems. These systems consist of a concentric barrel and plunger with a small annular clearance. During operating (axial movement of the plunger), highly nonuniform pressure and clearance fields are developed which are strongly coupled with each other. The model simultaneously solves for the transient response of the fluid film pressure distribution and three different structural deformation components in a two-dimensional (axial-circumferential) domain. These structural components are the transverse bending of the plunger, radial expansion of the barrel, and radial growth of the plunger from a Poisson effect. The fluid film pressure distribution is governed by the transient Reynolds equation (i.e., lubrication theory) and the structural deformation components governed by linear elastic theory. Full account is taken of these hydrostatic, hydrodynamic, and squeeze-film forces generated in the fluid. The model has been applied to several injector designs. Results have been compared with known performance characteristics and have been found to be qualitatively accurate, in that locations of plunger/barrel contact, and potential for failure, have been accurately predicted.


Lubricants ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 18
Author(s):  
Eckhard Schüler ◽  
Olaf Berner

In high speed, high load fluid-film bearings, the laminar-turbulent flow transition can lead to a considerable reduction of the maximum bearing temperatures, due to a homogenization of the fluid-film temperature in radial direction. Since this phenomenon only occurs significantly in large bearings or at very high sliding speeds, means to achieve the effect at lower speeds have been investigated in the past. This paper shows an experimental investigation of this effect and how it can be used for smaller bearings by optimized eddy grooves, machined into the bearing surface. The investigations were carried out on a Miba journal bearing test rig with Ø120 mm shaft diameter at speeds between 50 m/s–110 m/s and at specific bearing loads up to 4.0 MPa. To investigate the potential of this technology, additional temperature probes were installed at the crucial position directly in the sliding surface of an up-to-date tilting pad journal bearing. The results show that the achieved surface temperature reduction with the optimized eddy grooves is significant and represents a considerable enhancement of bearing load capacity. This increase in performance opens new options for the design of bearings and related turbomachinery applications.


1987 ◽  
Vol 109 (3) ◽  
pp. 444-450 ◽  
Author(s):  
L. Houpert ◽  
E. Ioannides ◽  
J. C. Kuypers ◽  
J. Tripp

A recently proposed fatigue life model for rolling bearings has been applied to the study of lifetime reduction under conditions conducive to microspalling. The presence of a spike in the EHD pressure distribution produces large shear stresses localized very close to the surface which may account for early failure. This paper describes a parametric study of the effect of such spikes. Accurate stress fields in the volume are calculated for simulated pressure spikes of different height, width and position relative to a Hertzian pressure distribution, as well as for different lubricant traction coefficients and film thicknesses. Despite the high stress concentrations in the surface layers, reductions in life predicted by the model are modest. Typically, the pressure spike may halve the life, with the implication that subsurface fatigue still dominates. In corroboration of this prediction, preliminary experimental work designed to reproduce microspalling conditions shows that microindents due to overrolling particles are a much more common form of surface damage than microspalling.


1994 ◽  
Vol 116 (3) ◽  
pp. 621-627 ◽  
Author(s):  
H. Desbordes ◽  
M. Fillon ◽  
C. Chan Hew Wai ◽  
J. Frene

A theoretical nonlinear analysis of tilting-pad journal bearings is presented for small and large unbalance loads under isothermal conditions. The radial displacements of internal pad surface due to pressure field are determined by a two-dimensional finite element method in order to define the actual film thickness. The influence of pad deformations on the journal orbit, on the minimum film thickness and on the maximum pressure is studied. The effects of pad displacements are to decrease the minimum film thickness and to increase the maximum pressure. The orbit amplitude is also increased by 20 percent for the large unbalance load compared to the one obtained for rigid pad.


Author(s):  
Jung Gu Lee ◽  
Alan Palazzolo

The Reynolds equation plays an important role for predicting pressure distributions for fluid film bearing analysis, One of the assumptions on the Reynolds equation is that the viscosity is independent of pressure. This assumption is still valid for most fluid film bearing applications, in which the maximum pressure is less than 1 GPa. However, in elastohydrodynamic lubrication (EHL) where the lubricant is subjected to extremely high pressure, this assumption should be reconsidered. The 2D modified Reynolds equation is derived in this study including pressure-dependent viscosity, The solutions of 2D modified Reynolds equation is compared with that of the classical Reynolds equation for the ball bearing case (elastic solids). The pressure distribution obtained from modified equation is slightly higher pressures than the classical Reynolds equations.


2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Eliott Guenat ◽  
Jürg Schiffmann

Abstract High-speed small-scale turbomachinery for waste heat recovery and vapor compression cycles is typically supported on gas-lubricated bearings operating close to the saturation conditions of the lubricant. Under particular conditions, the gas film might locally reach the saturation pressure with potentially hazardous effects on the performance of the gas bearing. The present work introduces a model based on the Reynolds equation and the development of cavitation modeling in liquid-lubricated bearings for condensing gas bearings. The effect of condensation on load capacity and pressure and density profiles is investigated for two one-dimensional bearing geometries (parabolic and Rayleigh step) and varying operating conditions. The results suggest that the load capacity is generally negatively affected if condensation occurs. An experimental setup consisting of a Rayleigh-step gas journal bearing with pressure taps to measure the local fluid film pressure is presented and operated in R245fa in near-saturated conditions. The comparison between the evolution of the fluid film pressure under perfect gas and near saturation conditions clearly suggests the occurrence of condensation in the fluid film. These results are corroborated by the very good agreement with the model prediction.


2020 ◽  
Vol 39 (1) ◽  
Author(s):  
D. Ohlendorf ◽  
K. Kerth ◽  
W. Osiander ◽  
F. Holzgreve ◽  
L. Fraeulin ◽  
...  

Abstract Background The aim of this study was to collect standard reference values of the weight and the maximum pressure distribution in healthy adults aged 18–65 years and to investigate the influence of constitutional parameters on it. Methods A total of 416 healthy subjects (208 male / 208 female) aged between 18 and 65 years (Ø 38.3 ± 14.1 years) participated in this study, conducted 2015–2019 in Heidelberg. The age-specific evaluation is based on 4 age groups (G1, 18–30 years; G2, 31–40 years; G3, 41–50 years; G4, 51–65 years). A pressure measuring plate FDM-S (Zebris/Isny/Germany) was used to collect body weight distribution and maximum pressure distribution of the right and left foot and left and right forefoot/rearfoot, respectively. Results Body weight distribution of the left (50.07%) and right (50.12%) foot was balanced. There was higher load on the rearfoot (left 54.14%; right 55.09%) than on the forefoot (left 45.49%; right 44.26%). The pressure in the rearfoot was higher than in the forefoot (rearfoot left 9.60 N/cm2, rearfoot right 9.51 N/cm2/forefoot left 8.23 N/cm2, forefoot right 8.59 N/cm2). With increasing age, the load in the left foot shifted from the rearfoot to the forefoot as well as the maximum pressure (p ≤ 0.02 and 0.03; poor effect size). With increasing BMI, the body weight shifted to the left and right rearfoot (p ≤ 0.001, poor effect size). As BMI increased, so did the maximum pressure in all areas (p ≤ 0.001 and 0.03, weak to moderate effect size). There were significant differences in weight and maximum pressure distribution in the forefoot and rearfoot in the different age groups, especially between younger (18–40 years) and older (41–65 years) subjects. Discussion Healthy individuals aged from 18 to 65 years were found to have a balanced weight distribution in an aspect ratio, with a 20% greater load of the rearfoot. Age and BMI were found to be influencing factors of the weight and maximum pressure distribution, especially between younger and elder subjects. The collected standard reference values allow comparisons with other studies and can serve as a guideline in clinical practice and scientific studies.


2018 ◽  
Vol 765 ◽  
pp. 199-203
Author(s):  
Takahiro Ohashi ◽  
Xin Tong ◽  
Zi Jie Zhao ◽  
Hamed Mofidi Tabatabaei ◽  
Tadashi Nishihara

In this study, the authors evaluated pressure distribution on a backing plate in friction-stir processing (FSP) utilizing an embedded pressure pin connected to a load sensor. They conducted FSP on aluminum alloy plates repeatedly offsetting the path-lines from the center of the pin and recorded change of forming pressure with tool position, which was compiled from the bearing load of the pin. The authors mapped the results to visualize the two-dimensional contact pressure distribution on a backing plate during FSP. They then compared the height distribution of the wall fabricated by friction-stir forming (FSF) utilizing a die having a groove with the observed distribution of pressure. Consequently, maximum pressure was observed beneath the rim of the tool probe at the retreating side (RS), and the highest points of the wall were observed at the RS.


Sign in / Sign up

Export Citation Format

Share Document