FEM-DEM Dialogue for Tribological Understanding

Author(s):  
Aure´lien Saulot ◽  
Mathieu Renouf ◽  
Yves Berthier

In many mechanisms, global dynamics resulting from operating conditions act as external solicitations for bodies in contact. As a consequence, dynamic instabilities occur in the contact and lead to particle detachments, usually called 3rd body and wear flow. Obviously, once detached, these particles play an important role in the evolution of the local friction coefficient and thus the local contact dynamics. As the contact is a confined area, experimental investigations have mostly been unsuccessful to locally describe both contact dynamics and material flows. To balance this lack, two numerical methods can be used to solve independently each part of the problem. From a global point of view, local contact dynamics is considered as a local condition for the two 1st bodies described as continuous media. From a local point of view, the discontinuity of the interface should be taken into account to describe material flows, considering effect of two bodies as boundary conditions. To model continuous aspects, a semi-implicit dynamic Finite Element (FE) method is used taking into account the elasto-plastic behaviour of the two bodies in contact. To model discontinuous effects, a non conventional Discrete Element (DE) method is used, called the Non Smooth Contact Dynamic (NSCD) method coupled with Cohesive Zone Models (CZM) to describe the behaviour of the 3rd body particles. To give a reliable description of the behaviour of bodies in contact, a coupling of scales is required on both local conditions and boundary conditions which are respectively inputs coming from DE and FE methods. The aim of the present paper is to gather these two complementary approaches by creating a numerical dialogue between DE and FE methods acting respectively at the 3rd and 1st bodies scales. After a brief description of each numerical model, the dialogue methodology will be detailed and applied to a reference example where dynamic instabilities occur in the contact. A comparison between results obtained with “classical” FE simulation and “coupled” FE-DE simulations is presented. As a conclusion, this numerical dialogue is a first step toward a better taking into account of the 3rd body behaviour in continuum model and its consequences on local contact dynamics.

Author(s):  
Thomas Hagemann ◽  
Hardwig Blumenthal ◽  
Christian Kraft ◽  
Hubert Schwarze

A theoretical algorithm for the analysis of bidirectional interaction of combined journal and thrust bearings is presented. While many theoretical and experimental investigations on the operating behavior of single journal and thrust bearings can be found only few results for combined bearings are available. However, combined bearings interact by exchanging lubricant and heat which can affect significant changes of boundary conditions compared to a single bearing application. Therefore, a novel procedure is developed to combine two separate codes for journal and thrust bearings in order to iteratively determine the coupling boundary conditions due to the special design of the entire bearing unit. The degree of interaction strongly depends on the type of lubrication. In a first step predictions are verified by measurement data for a combined bearing with a fixed-pad offset-halves journal bearing and a directed lubricated tilting-pad thrust bearing. Experiments were conducted on a high speed test rig up to sliding speeds of 107 m/s at the mean radius of the thrust bearing. As expected the interaction of the two oil films is comparably low in the investigated speed and load range for this bearing design because of the active lubrication of both bearings and the low hydraulic resistance of the thrust bearing. In order to theoretically investigate interaction of thrust and journal bearings in more details a combined bearing with fixed-pad thrust parts lubricated exclusively by the side flow of the journal bearing is studied. A variation of modeling level, pocket design of the journal part, thrust load and rotating frequency provides the following results: (i) hydraulic and energetic interaction have to be modelled in details, (ii) the axial flow resistance of the pockets strongly influences flow rates and the pressure level at the interfaces (iii) the level of interface pressure rises with increasing thrust loads and decreasing rotor speed, (iv) the axial bearing clearance is rather of minor importance for the investigated bearing. Finally, improvements in order to predict operating conditions more precisely are comprehensively discussed.


Author(s):  
Stefan Berten ◽  
Sebastian Hentschel ◽  
Karin Kieselbach ◽  
Philippe Dupont

Deformations, mechanical stresses and vibrations in centrifugal pumps are the result of pressure fluctuations, which are acting as excitation forces. When a pump operates at its optimum, the pressure pulsations are at minimum, but for a pump operating in part-load, pressure pulsations increase and subsequent vibration and deformation levels increase. In a recent experimental research, the pressure pulsations and the resulting structural stresses in the last stage impeller of a multistage pump have experimentally investigated for different operating conditions [1]. The experimental investigations have been complemented by transient numerical simulations using a commercial CFD code and structural analysis using the pressure pulsations resulting from the CFD code as boundary conditions. In the present study, a validation of these CFD and FEM simulations is presented. The analysis has been performed in three steps. In the first step, the transient CFD results for different load cases are analyzed and compared with the experimental results in order to evaluate the CFD simulations. In the second step the time domain pressure pulsation data are post-treated and decomposed into a series of rotating pressure waves. These pressure waves are then applied as boundary conditions to an FEM model and one full impeller revolution is simulated as steady calculations for 72 angular positions. The pressure pulsations in the best efficiency point are regularly distributed in space and time and dominated by rotor-stator-interaction. For part-load operation, the pressure distribution becomes more and more unsteady. The CFD results for part load exhibit stationary stall in the diffuser for a flow rate relative to best efficiency point of q* = 0.9 and unsteady stall behavior for a q* = 0.8. While the numerical CFD results agree well with experimental data for q* = 1 and q* = 0.9, at lower part load (q* = 0.8) the CFD didn’t reproduce the experimentally observed flow behavior, especially the rotating stall. The FEM results at design conditions show relatively low tangential stresses at the impeller outlet, which agree well with the measured deformations and stresses.


1990 ◽  
Vol 22 (1-2) ◽  
pp. 347-352 ◽  
Author(s):  
C. Paffoni ◽  
B. Védry ◽  
M. Gousailles

The Paris Metropolitan area, which contains over eight million inhabitants, has a daily output of about 3 M cu.meters of wastewater, the purification of which is achieved by SIAAP (Paris Metropolitan Area Sewage Service) in both Achères and Valenton plants. The carbon pollution is eliminated from over 2 M cu.m/day at Achères. In order to improve the quality of output water, its tertiary nitrification in fixed-bed reactors has been contemplated. The BIOFOR (Degremont) and BIOCARBONE (OTV) processes could be tested in semi-industrial pilot reactors at the CRITER research center of SIAAP. At a reference temperature of 13°C, the removed load is approximately 0.5 kg N NH4/m3.day. From a practical point of view, it may be asserted that in such operating conditions as should be at the Achères plant, one cubic meter of filter can handle the tertiary nitification of one cubic meter of purified water per hour at an effluent temperature of 13°C.


Author(s):  
Vishal V Patil ◽  
Ranjit S Patil

In this study, different characteristics of sustainable renewable biodiesels (those have a high potential of their production worldwide and in India) were compared with the characteristics of neat diesel to determine optimistic biodiesel for the diesel engine at 250 bar spray pressure. Optimistic fuel gives a comparatively lower level of emissions and better performance than other selected fuels in the study. Rubber seed oil methyl ester was investigated as an optimistic fuel among the other selected fuels such as sunflower oil methyl ester, neem seed oil methyl ester, and neat diesel. To enhance the performance characteristics and to further decrease the level of emission characteristics of fuel ROME, further experiments were conducted at higher spray (injection) pressures of 500 bar, 625 bar, and 750 bar with varying ignition delay period via varying its spray timings such as 8°, 13°, 18°, 23°, 28°, and 33° before top dead center. Spray pressure 250 bar at 23° before top dead center was investigated as an optimistic operating condition where fuel rubber seed oil methyl ester gives negligible hydrocarbon emissions (0.019 g/kW h) while its nitrogen oxide (NOX) emissions were about 70% lesser than those observed with neat diesel, respectively.


Author(s):  
Zhihang Song ◽  
Bruce T. Murray ◽  
Bahgat Sammakia

The integration of a simulation-based Artificial Neural Network (ANN) with a Genetic Algorithm (GA) has been explored as a real-time design tool for data center thermal management. The computation time for the ANN-GA approach is significantly smaller compared to a fully CFD-based optimization methodology for predicting data center operating conditions. However, difficulties remain when applying the ANN model for predicting operating conditions for configurations outside of the geometry used for the training set. One potential remedy is to partition the room layout into a finite number of characteristic zones, for which the ANN-GA model readily applies. Here, a multiple hot aisle/cold aisle data center configuration was analyzed using the commercial software FloTHERM. The CFD results are used to characterize the flow rates at the inter-zonal partitions. Based on specific reduced subsets of desired treatment quantities from the CFD results, such as CRAC and server rack air flow rates, the approach was applied for two different CRAC configurations and various levels of CRAC and server rack flow rates. Utilizing the compact inter-zonal boundary conditions, good agreement for the airflow and temperature distributions is achieved between predictions from the CFD computations for the entire room configuration and the reduced order zone-level model for different operating conditions and room layouts.


2007 ◽  
Vol 17 (06) ◽  
pp. 1801-1910 ◽  
Author(s):  
ELEONORA BILOTTA ◽  
GIANPIERO DI BLASI ◽  
FAUSTO STRANGES ◽  
PIETRO PANTANO

In this article, we conclude our series of papers on the analysis and visualization of Chua attractors and their generalizations. We present a gallery of 144 n-scroll, 15 hyperchaotic and 37 synchronized systems. Along with time series and FFT we provide 3D visualizations; for some attractors we also supply Lyapunov coefficients and fractal dimensions. The goal in constructing our Gallery has been to make the general public aware of the enormous variety of chaotic phenomena and to change the widespread impression that they are isolated rarities. The Gallery provides a valuable collection of images and technical data which can be used to analyze these phenomena and to reproduce them in future studies. From a scientific point of view, we have tried to identify new methodological approaches to the study of chaos, opening nontraditional perspectives on the complexity of this domain. In our papers, we have discussed a broad range of topics, ranging from techniques for visualizing Chua attractors to computational methods allowing us to make a statistical classification of attractors' positions in phase space and to describe the evolutionary processes through which their shapes change over time. We see these processes as analogous to population dynamics in artificial environments. Within these environments, we use experimental methods to identify the models which guide morphogenetic change and which organize genetic landscapes in parameter space. This paper is organized as follows. First, we provide formal descriptions of the attractors generated by n-scroll, hyperchaotic and synchronized systems. The next section describes a Gallery of Chua attractors, generated by gradually varying the parameters and analyzing the resulting bifurcation maps. We then describe software tools allowing us to perform statistical analyses on selected sets of attractors, to visualize them, to explore their organization in phase space, and to conduct experimental investigations of the morphogenetic processes through which a small set of base attractors can generate a broad range of different forms. In the last section, we describe the creation of a Virtual 3D Gallery displaying some of the attractors we have presented in our six papers. The attractors are organized by theme, as they might be in a museum. The environment allows users to explore the attractors, interact with shapes, listen to music and sounds generated by the attractors, change their spatial organization, and create new shapes. To complete the paper — and the series — we propose a number of general conclusions.


Author(s):  
Lisa Hühn ◽  
Oliver Munz ◽  
Corina Schwitzke ◽  
Hans-Jörg Bauer

Abstract Labyrinth seals are used to prevent and control the mass flow rate between rotating components. Due to thermally and mechanically induced expansions during operation and transient flight maneuvers, a contact, the so-called rubbing process, between rotor and stator cannot be excluded. A large amount of rubbing process data concerning numerical and experimental investigations is available in public literature as well as at the Institute of Thermal Turbomachinery (ITS). The investigations were carried out for different operating conditions, material combinations, and component geometries. In combination with the experiments presented in this paper, the effects of the different variables on load due to rubbing are compared, and discussed with the focus lying on the material combination. The influence of the material on the loads can be identified as detailed as never before. For example, the contact forces in the current experiments are higher due to a higher temperature resistance of Young’s modulus. The analysis will also be based on the rubbing of turbine blades. Design guidelines are derived for labyrinth seals with improved properties regarding tolerance of rub events. Based on the knowledge obtained, guidelines for designing reliable labyrinth seals for future engines are discussed.


Author(s):  
Jingjing Luo ◽  
Dieter Brillert

Abstract Dry gas lubricated non-contacting mechanical seals (DGS), most commonly found in centrifugal compressors, prevent the process gas flow into the atmosphere. Especially when high speed is combined with high pressure, DGS is the preferred choice over other sealing alternatives. In order to investigate the flow field in the sealing gap and to facilitate the numerical prediction of the seal performance, a dedicated test facility is developed to carry out the measurement of key parameters in the gas film. Gas in the sealing film varies according to the seal inlet pressure, and the thickness of gas film depends on this fluctuated pressure. In this paper, the test facility, measurement methods and the first results of static pressure measurements in the sealing gap of the DGS obtained in the described test facility are presented. An industry DGS with three-dimensional grooves on the surface of the rotating ring, where experimental investigations take place, is used. The static pressure in the gas film is measured, up to 20 bar and 8,100 rpm, by several high frequency ultraminiature pressure transducers embedded into the stationary ring. The experimental results are discussed and compared with the numerical model programmed in MATLAB, the characteristic and magnitude of which have a good agreement with the numerical simulations. It suggests the feasibility of measuring pressure profiles of the standard industry DGS under pressurized dynamic operating conditions without altering the key components of the seal and thereby affecting the seal performance.


Sign in / Sign up

Export Citation Format

Share Document