Aerodynamic Analysis of Return Channels of Multi-Stage Centrifugal Compressors

2000 ◽  
Author(s):  
L. J. Lenke ◽  
H. Simon

Abstract From the wide range of applications in which centrifugal compressors are used, two different return channels will be investigated, to demonstrate the influence of flow coefficients onto the flow structure. The investigated return channels are typical to join the exit from one stage of a centrifugal machine to the inlet of the next stage and cover the range of very small and large flow coefficients. Starting with a comparison between measurements and numerical results to demonstrate the performance of the calculations, the comparison of both return channels show that three-dimensional phenomena and viscous effects such as secondary flow and wakes have appreciable effect on the fluid dynamics and performance of centrifugal compressors. Especially the deceleration of the flow introduces large separations and recirculations which will decrease the efficiency. Furthermore, a variation of the 180°-bend demonstrates the influence of streamline curvature onto the separation behaviour within the whole return channel. Due to the strongly three-dimensional flow structure with high streamline curvature and secondary flows on hub and shroud of the return channel vanes, a modified explicit algebraic Reynolds stress model will be used for all calculations.

Author(s):  
L. J. Lenke ◽  
H. Simon

Numerical simulations of the flow within return channels for the aerodynamic design are presented. The investigated return channels are typical to join the exit from one stage of a centrifugal machine to the inlet of the next stage and cover the range of high flow coefficients. Due to the strongly three-dimensional flow structure with high streamline curvature and secondary flows on hub and shroud of the return channel vanes, a modified explicit algebraic Reynolds stress model will be used. Starting with a comparison between measurements and numerical results to demonstrate the performance of the turbulence model in the prediction of losses, exit flow angle and separation behavior, further numerical investigations with different variations of the geometry of the channel will be considered. 3-D turbulent calculations at the design point and part load range show the influence of the design especially of the crossover bend onto the flow structure.


Author(s):  
L. J. Lenke ◽  
H. Simon

The numerical simulation of the flow within a return channel is reported in this paper. The investigated return channel is typically to join the exit from one stage of a centrifugal machine to the inlet of the next stage. These channel covers the range of extremely low flow coefficients. Different 3-D calculations with two different turbulence models (low-Reynolds-number k-ϵ and explicit algebraic Reynolds stress model) at the design point and part load range show the strongly three-dimensional flow structure with secondary flows on hub and shroud of the deswirl vanes. There are also significant separations downstream of the 180°-bend at suction and pressure side of the vanes. The presented numerical results are compared with experimental data in different planes and at the vane contour. The results indicate small differences between the turbulence models in the prediction of losses, flow angles and separation behavior at design point. At off-design conditions the turbulence models begin to deviate notably in their prediction of separation.


Author(s):  
Ranjan Saha ◽  
Jens Fridh ◽  
Torsten Fransson ◽  
Boris I. Mamaev ◽  
Mats Annerfeldt

An experimental study of the hub leading edge contouring using fillets is performed in an annular sector cascade to observe the influence of secondary flows and aerodynamic losses. The investigated vane is a three dimensional gas turbine guide vane (geometrically similar) with a mid-span aspect ratio of 0.46. The measurements are carried out on the leading edge fillet and baseline cases using pneumatic probes. Significant precautions have been taken to increase the accuracy of the measurements. The investigations are performed for a wide range of operating exit Mach numbers from 0.5 to 0.9 at a design inlet flow angle of 90°. Data presented include the loading, fields of total pressures, exit flow angles, radial flow angles, as well as profile and secondary losses. The vane has a small profile loss of approximately 2.5% and secondary loss of about 1.1%. Contour plots of vorticity distributions and velocity vectors indicate there is a small influence of the vortex-structure in endwall regions when the leading edge fillet is used. Compared to the baseline case the loss for the filleted case is lower up to 13% of span and higher from 13% to 20% of the span for a reference condition with Mach no. of 0.9. For the filleted case, there is a small increase of turning up to 15% of the span and then a small decrease up to 35% of the span. Hence, there are no significant influences on the losses and turning for the filleted case. Results lead to the conclusion that one cannot expect a noticeable effect of leading edge contouring on the aerodynamic efficiency for the investigated 1st stage vane of a modern gas turbine.


1991 ◽  
Vol 113 (1) ◽  
pp. 34-41 ◽  
Author(s):  
G. J. Yoo ◽  
R. M. C. So ◽  
B. C. Hwang

Internal rotating boundary-layer flows are strongly influenced by large circumferential strain and the turbulence field is anisotropic. This is especially true in the entry region of a rotating pipe where the flow is three dimensional, the centrifugal force due to fluid rotation is less important, and the circumferential strain created by surface rotation has a significant effect on the turbulence field near the wall. Consequently, viscous effects cannot be neglected in the near-wall region. Several low-Reynolds-number turbulence closures are proposed for the calculation of developing rotating pipe flows. Some are two-equation closures with and without algebraic stress correction, while others are full Reynolds-stress closures. It is found that two-equation closures with and without algebraic stress correction are totally inadequate for this three-dimensional flow, while Reynolds-stress closures give results that are in good agreement with measurements over a wide range of rotation numbers.


1988 ◽  
Vol 110 (1) ◽  
pp. 115-121 ◽  
Author(s):  
W. Stein ◽  
M. Rautenberg

In vaned diffusers of centrifugal compressors many different flow phenomena interfere with one another, and different geometric parameters influence the flow field. Variations of these parameters allow the designer to optimize the diffuser for a certain application or to use a variable geometry for controlling the stage over a wide range. Two vaned diffusers that differ only in their passage widths are investigated using different types of measuring technique, in order to analyze the flow structure and to use it as a verification of a calculation method that allows detailed predictions of flow field parameters inside the diffuser, by taking into account geometric variations. Using this method predictions of the flow field of a variable geometry diffuser are made and are compared with the measured performance curves of the stage.


Author(s):  
Keith M. Boyer ◽  
Walter F. O’Brien

A streamline curvature method with improvements to key loss models is applied to a two-stage, low aspect ratio, transonic fan with design tip relative Mach number of approximately 1.65. Central to the improvements is the incorporation of a physics-based shock model. The attempt here is to capture the effects of key flow phenomena relative to the off-design performance of the fan. A quantitative analysis regarding solution sensitivities to model parameters that influence the key phenomena over a wide range of operating conditions is presented. Predictions are compared to performance determined from overall and interstage measurements, as well as from a three-dimensional, steady, Reynolds-averaged Navier-Stokes method applied across the first rotor. Overall and spanwise comparisons demonstrate that the improved model gives reasonable performance trending and generally accurate results. The method can be used to provide boundary conditions to higher-order solvers, or implemented within novel approaches using the streamline curvature method to explore complex engine-inlet integration issues, such as time-variant distortion.


2007 ◽  
Vol 74 (6) ◽  
pp. 1142-1156 ◽  
Author(s):  
I. Vallet

The purpose of this paper is to assess the importance of the explicit dependence of turbulent diffusion on the gradients of mean-velocity modeling in second moment closures on three-dimensional (3D) detached and secondary flows prediction. Following recent theoretical work of Younis, Gatski, and Speziale, 2000, [Proc. Royal Society Lon. A, 456, pp. 909–920], we propose a triple-velocity correlation model, including the effects of the spatial gradients of mean velocity. A model for both the slow and rapid parts of the pressure-diffusion term was also developed and added to a wall-normal-free Reynolds-stress model. The present model is validated against 3D detached and secondary flows. Further developments, especially on the echo terms (which should appear in the formulation of pressure-velocity correlation), are discussed.


Author(s):  
Francesco Ornano ◽  
Thomas Povey

High pressure nozzle guide vane endwalls are often characterized by highly three-dimensional flows. The flow structure depends on the incoming boundary layer state (inlet total pressure profile) and the (static) pressure gradients within the vane passage. In many engine applications this can lead to strong secondary flows. The prediction and design of optimized endwall film cooling systems is therefore challenging, and a topic of current research interest. A detailed experimental investigation of the film effectiveness distribution on an engine-realistic endwall geometry is presented in this paper. The film cooling system was a fairly conventional axisymmetric double row configuration. The study was performed on a large-scale, low-speed wind tunnel using infrared thermography. Adiabatic film effectiveness distributions were measured using IR cameras and tests were performed across a wide range of coolant-to-mainstream momentum-flux and mass flow ratios. Complex interactions between coolant film and vane secondary flows are presented and discussed. A particular feature of interest is the suppression of secondary flows (and associated improved adiabatic film effectiveness) beyond a critical momentum flux ratio. Jet lift-off effects are also observed, and discussed in the context of sensitivity to local momentum flux ratio. Full coverage experimental results are also compared to three-dimensional, steady-state CFD simulations. This paper provides insights into the effects of momentum flux ratio in establishing similarity between cascade conditions and engine conditions, and gives design guidelines for engine designers in relation to minimum endwall cooling momentum flux requirements to suppress endwall secondary flows.


Author(s):  
D. Lippett ◽  
G. Woollatt ◽  
P. C. Ivey ◽  
P. Timmis ◽  
B. A. Charnley

This paper, in two parts, reports measurements from, and simulation of, Cranfield University’s 3-stage high-speed axial compressor. Using this newly built rig, supported by European Commission, a consortium of gas-turbine companies have tested a set of conventionally stacked 2D rotor and stator blades. The results from this experiment were used to evaluate and assess the performance of several commercially available CFD codes leading to the collaborative design of an advanced three-dimensional blade set seeking, if possible, a 2% efficiency gain. The limited axial spacing between the measurement planes and the blade rows required the design of a unique seven probe assembly and traverse mechanism able to yaw and pitch the probes and to control the insertion depths. This mechanism was designed to accommodate different probes, such as cobra, fast response (pneumatic) and temperature measuring probes, and deliver area traverses between rotor and stators throughout the compressor. For probe calibration a high speed wind tunnel section was designed to accommodate this mechanism enabling calibrations for Mach numbers up to 0.78, as well as for a wide range of pitch and yaw angles values. This mechanism combined with a post processing programme incorporating a mapping technique for the relative offset of the measurement points on the probe secured very detailed results throughout the compressor. Measurements show the complex three dimensional flow structure and secondary flows associated with tip-leakage, endwall boundary layers, wake transportation and blade row interactions. The importance of a rigorous mapping procedure was particularly useful where the wake thickness was small and pressure gradients high in comparison to the probe size.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8080
Author(s):  
Iván Castro-Fernández ◽  
Ricardo Borobia-Moreno ◽  
Rauno Cavallaro ◽  
Gonzalo Sánchez-Arriaga

The validity of using a low-computational-cost model for the aerodynamic characterization of Airborne Wind Energy Systems was studied by benchmarking a three-dimensional Unsteady Panel Method (UnPaM) with experimental data from a flight test campaign of a two-line Rigid-Framed Delta kite. The latter, and a subsequent analysis of the experimental data, provided the evolution of the tether tensions, the full kinematic state of the kite (aerodynamic velocity and angular velocity vectors, among others), and its aerodynamic coefficients. The history of the kinematic state was used as input for UnPaM that provided a set of theoretical aerodynamic coefficients. Disparate conclusions were found when comparing the experimental and theoretical aerodynamic coefficients. For a wide range of angles of attack and sideslip angles, the agreement in the lift and lateral force coefficients was good and moderate, respectively, considering UnPaM is a potential flow tool. As expected, UnPaM predicts a much lower drag because it ignores viscous effects. The comparison of the aerodynamic torque coefficients is more delicate due to uncertainties on the experimental data. Besides fully non-stationary simulations, the lift coefficient was also studied with UnPaM by assuming quasi-steady and steady conditions. It was found that for a typical figure-of-eight trajectory there are no significant differences between unsteady and quasi-steady approaches allowing for fast simulations.


Sign in / Sign up

Export Citation Format

Share Document