CONTROL OF CHAOS THROUGH AN INSTANTANEOUS LYAPUNOV EXPONENT TARGETING CONTROL ALGORITHM

2008 ◽  
Vol 18 (08) ◽  
pp. 2319-2344
Author(s):  
AHMED OTEAFY ◽  
MOHAMED ZRIBI ◽  
NEJIB SMAOUI

This paper presents an approach to control the chaotic dynamics of discrete-time (or discretizable) systems. The objective of the paper is to focus on the suppression of the chaotic dynamics and the restoration of order with a state feedback controller. The proposed control method works by targeting instantaneous measures of the Lyapunov exponents of a system and setting them to desired values. At first, the paper presents an instantaneous measure of the Lyapunov exponents; this measure is used to control the system's dynamics. Then, the formulation of the control algorithm to suppress chaos is presented. Two cases for the control structure are considered. The first case corresponds to the case when the number of control inputs is equal to the number of states; the second case corresponds to the case when the number of control inputs is less than the number of states. The Lorenz system, the smooth Chua Oscillator system, the Rössler-hyperchaos system and a fourth order chaotic oscillator system are used as examples to illustrate the proposed control scheme. The simulation results show the efficacy of the proposed control approach.

2019 ◽  
Vol 14 ◽  
Author(s):  
Tayyab Khan ◽  
Karan Singh ◽  
Kamlesh C. Purohit

Background: With the growing popularity of various group communication applications such as file transfer, multimedia events, distance learning, email distribution, multiparty video conferencing and teleconferencing, multicasting seems to be a useful tool for efficient multipoint data distribution. An efficient communication technique depends on the various parameters like processing speed, buffer storage, and amount of data flow between the nodes. If data exceeds beyond the capacity of a link or node, then it introduces congestion in the network. A series of multicast congestion control algorithms have been developed, but due to the heterogeneous network environment, these approaches do not respond nor reduce congestion quickly whenever network behavior changes. Objective: Multicasting is a robust and efficient one-to-many (1: M) group transmission (communication) technique to reduced communication cost, bandwidth consumption, processing time and delays with similar reliability (dependability) as of regular unicast. This patent presents a novel and comprehensive congestion control method known as integrated multicast congestion control approach (ICMA) to reduce packet loss. Methods: The proposed mechanism is based on leave-join and flow control mechanism along with proportional integrated and derivate (PID) controller to reduce packet loss, depending on the congestion status. In the proposed approach, Proportional integrated and derivate controller computes expected incoming rate at each router and feedback this rate to upstream routers of the multicast network to stabilize their local buffer occupancy. Results: Simulation results on NS-2 exhibit the immense performance of the proposed approach in terms of delay, throughput, bandwidth utilization, and packet loss than other existing methods. Conclusion: The proposed congestion control scheme provides better bandwidth utilization and throughput than other existing approaches. Moreover, we have discussed existing congestion control schemes with their research gaps. In the future, we are planning to explore the fairness and quality of service issue in multicast communication.


2019 ◽  
Vol 42 (2) ◽  
pp. 228-243
Author(s):  
An Zhang ◽  
Pan Yang ◽  
Ding Zhou

This paper focuses on event-triggered finite-time consensus problem of second-order multi-agent system, which is subjected to external bounded disturbance. First, a novel finite-time consensus control algorithm based on the event-triggering control scheme is proposed. The proposed algorithm contains a saturation function that is disturbance rejection and aims at eliminating the chattering problem caused by the discontinuity of the control algorithm in some existing work. Further, the utilization of saturation function reduces damages to the actuators and decreases energy consumptions in practical applications. Second, an event-triggering function is developed to generate the control event sequences, which is fully continuous communication free and avoids continuous update of the controller by contrast with real-time control method and continuous communication event-triggered control scheme. Third, finite-time bounded consensus can be reached with the scale of the convergence region adjusted by appropriate parameter selecting. A rigorous proof based on Lyapunov stability analysis is given to verify that the event-triggered control algorithm, under the derived conditions, solves the second-order finite-time consensus with chattering free and being robust to external disturbances as well as excluding the Zeno behavior. Finally, two simulation examples are performed to validate the effectiveness of the results.


2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Yuanchun Li ◽  
Tianhao Ma ◽  
Bo Zhao

For the probe descending and landing safely, a neural network control method based on proportional integral observer (PIO) is proposed. First, the dynamics equation of the probe under the landing site coordinate system is deduced and the nominal trajectory meeting the constraints in advance on three axes is preplanned. Then the PIO designed by using LMI technique is employed in the control law to compensate the effect of the disturbance. At last, the neural network control algorithm is used to guarantee the double zero control of the probe and ensure the probe can land safely. An illustrative design example is employed to demonstrate the effectiveness of the proposed control approach.


2014 ◽  
Vol 644-650 ◽  
pp. 735-740
Author(s):  
Yu Ling Ye

An engineering buoyancy control scheme was proposed to compensate the change of residual buoyancy for low-speed under-actuated AUVs. The buoyancy control system is made up of buoyancy controller and two sets of buoyancy control devices include: water tank, sea water pump, valve grouping, pipeline etc. Buoyancy control devices were configured to both head and tail part of the AUV symmetrical to its buoyant center. Depth control algorithm and buoyancy control algorithm were proposed separately. In the process of voyage at a constant depth, the real time speed, pitch angle and depth error were detected to evaluate the residual buoyancy indirectly, and then the real time buoyancy control was executed by pumping the water into or out of the tanks. The buoyancy control scheme was applied to the type of low-speed under-actuated AUV and simulation and experiments results show that the buoyancy control approach and the control laws are feasible and effective.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xiaofang Kang ◽  
Peipei Zhang ◽  
Yiwei Zhang ◽  
Dawei Man ◽  
Qinghu Xu ◽  
...  

A decentralized control scheme can effectively solve the control problem of civil engineering structure vibration under earthquake. This paper takes a research into the decentralized control scheme of adjacent buildings when the earthquake happens. It combines overlapping decentralized control method and linear matrix inequality (LMI) with H ∞ control algorithm and puts forward the overlapping decentralized H ∞ control method. A simplified dynamical model of structural vibration control has been established considering the topology structural features of adjacent buildings. The H ∞ control algorithm is applied into each dynamically different subsystems and can be also served as the decentralized H ∞ controllers. Therefore, by contracting decentralized H ∞ controllers to original state space, overlapping decentralized H ∞ controllers are obtained. In this manner, the adjacent buildings’ structure model is analyzed in terms of simulation and calculation which provides a comprehensive insight into vibration control. The results show that the centralized control, the decentralized control, and the overlapping decentralized control, based on linear matrix inequality, can be nearly effective in cases above satisfactorily. Besides, it can also reduce the computational cost as well as increase the flexibility of controller design.


2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Xiaofang Kang ◽  
Shuai Li ◽  
Guanghui Xia ◽  
Qinghu Xu ◽  
Dawei Man ◽  
...  

The vibration control system of a building structure under a strong earthquake can be regarded as a large complex system composed of a series of overlapping subsystems. In this paper, the overlapping decentralized control of building structure vibration under seismic excitation is studied. Combining the overlapping decentralized control method, H∞ control algorithm, and passive fault-tolerant control method, a passive fault-tolerant overlapping decentralized control method based on the H∞ control algorithm is proposed. In this paper, the design of robust H∞ finite frequency passive fault-tolerant static output feedback controller for each subsystem is studied. The fault matrix of the subcontroller is expressed by a polyhedron with finite vertices. In order to reduce the influence of external disturbance on the controlled output, the finite frequency H∞ control is adopted and the Hamiltonian matrix is avoided. In this paper, the passive fault-tolerant overlapping decentralized control method based on H∞ control algorithm is applied to the vibration control system of the four-story building structure excited by the Hachinohe seismic wave. One drive is set on each layer of the structure, and a total of four drives are set. Select the driver fault factor of 0.5 or 1 and the frequency band [0.3, 8] Hz. The overlapping decentralized control scheme and 16 fault-tolerant fault matrices are designed, and the numerical comparison results are given. The results show that both overlapping decentralized control strategy and multioverlapping decentralized control strategy have achieved good control results. Due to the different number of subsystems and overlapping information, the overlapping decentralized control scheme increases the flexibility of controller setting and reduces the computational cost.


2018 ◽  
Vol 24 (23) ◽  
pp. 5570-5584 ◽  
Author(s):  
Seyed Mohammad Ahmadi ◽  
Mohammad Mehdi Fateh

This paper presents a robust task-space control approach using a direct adaptive Taylor series controller for electrically driven robot manipulators. In an adaptive Taylor series control scheme, the parameters of controller are directly tuned in order to reduce the task-space tracking error in the presence of structured and unstructured uncertainty. Also, the upper bound of approximation error is estimated to form a robustifying term and the asymptotic convergence of task-space tracking error and its time derivative is proven based on the stability analysis. Simulation results are included to verify the effectiveness of the proposed control method.


2001 ◽  
Author(s):  
Perry Y. Li ◽  
Petar J. Bjegovic ◽  
Shri Ramaswamy

Abstract Many manufacturing processes involve the successive processing of the substrate at multiple station on a transport medium, with the hope that at the end of the process, the product has the desired property. Paper manufacturing is an example in which over 90% of the water from pulp is sequentially removed through gravity, vacuum dewatering, pressing, and thermal drying. The consistency and uniformity of the moisture content at the end of process is important for paper quality. Current strategy for the control of moisture content uses a feedback sensor at the end of the process to adjust the dryers. This introduces a long deadtime and causes excessive use of the dryers, which translate to limitations in performance, robustness and inefficient energy usage. In this paper, we investigate a new control approach in which in-process moisture contents are estimated using air-flow as surrogate measurements, and the pressure settings in the multiple vacuum dewatering boxes are adjusted according to the surrogate measurements. A preemptive control algorithm is developed which has the ability to decouple and eliminate the effects of the disturbances that occur upstream in the process from downstream. Robustness analysis and simulation studies suggest that as long as the surrogate measurements are accurate, the proposed control scheme will be robust and accurate.


Author(s):  
P. R. Ouyang ◽  
W. J. Zhang ◽  
Madan M. Gupta

In this paper, a new adaptive switching control approach, called adaptive evolutionary switching PD control (AES-PD), is proposed for iterative operations of robot manipulators. The proposed AES-PD control method is a combination of the feedback of PD control with gain switching and feedforward using the input torque profile obtained from the previous iteration. The asymptotic convergence of the AES-PD control method is theoretically proved using Lyapunov’s method. The philosophy of the switching control strategy is interpreted in the context of the iteration domain to increase the speed of the convergence for trajectory tracking of robot manipulators. The AES-PD control has a simple control structure that makes it easily implemented. The validity of the proposed control scheme is demonstrated for the trajectory tracking of robot manipulators through simulation studies. Simulation results show that the AES-PD control can improve the tracking performance with an increase of the iteration number. The EAS-PD control method has the adaptive and learning ability; therefore, it should be very attractive to applications of industrial robot control.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4563
Author(s):  
Muhammad Ali ◽  
Ghulam Hafeez ◽  
Ajmal Farooq ◽  
Zeeshan Shafiq ◽  
Faheem Ali ◽  
...  

This paper proposes a hybrid control scheme for a newly devised hybrid multilevel inverter (HMLI) topology. The circuit configuration of HMLI is comprised of a cascaded converter module (CCM), connected in series with an H-bridge converter. Initially, a finite set model predictive control (FS-MPC) is adopted as a control scheme, and theoretical analysis is carried out in MATLAB/Simulink. Later, in the real-time implementation of the HMLI topology, a hybrid control scheme which is a variant of the FS-MPC method has been proposed. The proposed control method is computationally efficient and therefore has been employed to the HMLI topology to mitigate the high-frequency switching limitation of the conventional MPC. Moreover, a comparative analysis is carried to illustrate the advantages of the proposed work that includes low switching losses, higher efficiency, and improved total harmonic distortion (THD) in output current. The inverter topology and stability of the proposed control method have been validated through simulation results in MATLAB/Simulink environment. Experimental results via low-voltage laboratory prototype have been added and compared to realize the study in practice.


Sign in / Sign up

Export Citation Format

Share Document