Active Foot Pressure Control for Diabetic Neuropathy During Walking

Author(s):  
Vidya K. Nandikolla ◽  
Marco P. Schoen ◽  
Ajay Mahajan

Diabetic Mellitus is a disease caused either due to insufficient insulin produced by the pancreas or the body cells are unable to use the existing insulin. One of the main complications associated with diabetics is neuropathy, which is caused due to complete or partial loss of sensation in the feet and legs that lead to problems like inadequate delivery of nutrients and oxygen to the foot, which will cause healing impairment. In diabetic neuropathic subject, the hardness of foot sole soft tissue gives rise to plantar ulcer development. In this work, a biomechanical model is used to study the plantar distribution of forces in the foot. The dynamic foot pressure distribution during walking is used to carry out a stress analysis. This includes the motion of heel strike, mid-stance, and push off section of the feet during walking. A control strategy is proposed to mitigate the high stress concentration occurring during the walking phase. The control strategy includes a synergy of an adaptive neuro-fuzzy inference controller and for comparison an optimal controller. The actuation is simulated through an external shoe insert. The three-dimensional multi-segment biomechanical model is used in conjunction with experimental data gathered from various literatures for simulation purposes of the proposed control strategy. The proposed intelligent controller focuses on stresses generated by the foot pressure distribution during walking and compares these with stress levels of healthy subjects. The insert changes its shape accordingly to redistribute the pressure levels at various regions so to achieve a pressure distribution equivalent to a healthy subject. It is assumed that the insert can actuate and measure the pressure distribution simultaneously. This could be achieved using smart materials for the shoe insert. The simulation results show the effectiveness of the proposed algorithms and approach.

Author(s):  
Vidya K. Nandikolla ◽  
Marco P. Schoen ◽  
Ajay Mahajan

Foot Ulcer in diabetic patients is a serious medical problem. A major contributor for the development of diabetic foot ulcers is a high, localized plantar foot pressure. It is believed that in diabetes the nerves in the extreme parts of the human body are damaged and cause deregulated blood flow, which may cause an insufficient blood supply. This can lead to a loss of feeling, change in shape of the feet, necrosis and ulcerations, and ultimately to partial or total amputation of the body part. The loss of feeling in the feet results in a loss of feedback to control the foot pressure distribution. It is proposed that high foot pressure concentration can be avoided by using an active, intelligent shoe insert, which is based on the mechanics of smart materials. This paper investigates the controls schemes necessary to accomplish an external foot pressure distribution scheme for preventing ulcerations or the progression of existing ulcers. A simple mathematical model of the shoe insert is developed. Foot pressure distributions for healthy subjects are used as a basis to control elevated foot pressures by changing the shape of the shoe insert. The optimal shape of the shoe insert with regard to the existing pressure distribution is computed. The optimal shape is implemented using different control schemes. The performance and the efficiency of the proposed control schemes are compared and analyzed. The main advantage of the proposed active shoe insert is its capability to sense the pressure peaks, change the pressure distribution, and provide stimuli for increased blood flow in the diabetic feet. [1,2,3]


Author(s):  
Christian A. Johnson ◽  
Jeffrey C. Woldstad

A static three-dimensional low-back biomechanical model was developed to estimate the levels of compressive force on the L3/L4 spinal joint during an experiment that simulated wheel turning. We recorded three-dimensional body posture and the resultant forces at the hands for analysis by the model. The model employed a standard link analysis procedure to resolve the external forces acting on the body to a resultant moment about L3/L4. The model then implemented an optimization algorithm to estimate the internal lumbar muscle forces generated to resist the external forces. The muscle forces and external forces were added to arrive at a prediction of compressive force at L3/L4. The experiment investigated the effects of general body posture, left hand grip, gender, and hand brake torque level upon predicted compressive force at L3/L4. A repeated measures analysis of variance (ANOVA) revealed all but one main effect and some interaction effects to be significant at p<0.05. Average predicted L3/L4 compressive forces at maximum wheel torque levels ranged from 1644N for females to 6926N for large males.


Author(s):  
Evandro M. Ficanha ◽  
Mohammad Rastgaar ◽  
Barzin Moridian ◽  
Nina Mahmoudian

This article compares the three-dimensional angles of the ankle during step turn and straight walking. We used an infrared camera system ( Qualisys Oqus ®) to track the trajectories and angles of the foot and leg at different stages of the gait. The range of motion (ROM) of the ankle during stance periods was estimated for both straight step and step turn. The duration of combined phases of heel strike and loading response, mid stance, and terminal stance and pre-swing were determined and used to measure the average angles at each combined phase. The ROM in Inversion/Eversion (IE) increased during turning while Medial/Lateral (ML) rotation decreased and Dorsiflexion/Plantarflexion (DP) changed the least. During the turning step, ankle displacement in DP started with similar angles to straight walk (−9.68° of dorsiflexion) and progressively showed less plantarflexion (1.37° at toe off). In IE, the ankle showed increased inversion leaning the body toward the inside of the turn (angles from 5.90° to 13.61°). ML rotation initiated with an increased medial rotation of 5.68° relative to the straight walk transitioning to 12.06° of increased lateral rotation at the toe off. A novel tendon driven transtibial ankle-foot prosthetic robot with active controls in DP and IE directions was fabricated. It is shown that the robot was capable of mimicking the recorded angles of the human ankle in both straight walk and step turn.


2016 ◽  
Vol 53 (1) ◽  
pp. 9-22 ◽  
Author(s):  
Zhao Zhang ◽  
Shiming Li ◽  
Bingjun Wan ◽  
Peter Visentin ◽  
Qinxian Jiang ◽  
...  

AbstractNo existing studies of badminton technique have used full-body biomechanical modeling based on three-dimensional (3D) motion capture to quantify the kinematics of the sport. The purposes of the current study were to: 1) quantitatively describe kinematic characteristics of the forehand smash using a 15-segment, full-body biomechanical model, 2) examine and compare kinematic differences between novice and skilled players with a focus on trunk rotation (the X-factor), and 3) through this comparison, identify principal parameters that contributed to the quality of the skill. Together, these findings have the potential to assist coaches and players in the teaching and learning of the forehand smash. Twenty-four participants were divided into two groups (novice, n = 10 and skilled, n = 14). A 10-camera VICON MX40 motion capture system (200 frames/s) was used to quantify full-body kinematics, racket movement and the flight of the shuttlecock. Results confirmed that skilled players utilized more trunk rotation than novices. In two ways, trunk rotation (the X-factor) was shown to be vital for maximizing the release speed of the shuttlecock – an important measure of the quality of the forehand smash. First, more trunk rotation invoked greater lengthening in the pectoralis major (PM) during the preparation phase of the stroke which helped generate an explosive muscle contraction. Second, larger range of motion (ROM) induced by trunk rotation facilitated a whip-like (proximal to distal) control sequence among the body segments responsible for increasing racket speed. These results suggest that training intended to increase the efficacy of this skill needs to focus on how the X-factor is incorporated into the kinematic chain of the arm and the racket.


2020 ◽  
Vol 24 (4) ◽  
pp. 194-204
Author(s):  
Jarosław Jaszczur-Nowicki ◽  
Joanna Bukowska ◽  
Dariusz Kruczkowski ◽  
Michał Spieszny ◽  
Magdalena Pieniążek ◽  
...  

Background and Study Aim: The article presents the results of analyses of students’ foot pressure distribution on the ground, as well as their body balance before and after exercise (Harvard Step Test). The aim of the paper was to carry out a comparative analysis of foot pressure distribution on the ground, as well as assess the degree of body balance before and after exercise. With that purpose in view, the following research hypothesis was formulated: in the students participating in the study, the distribution of foot pressure on the ground and the degree of body balance differ significantly after physical effort compared with the at-rest conditions. Material and Methods: The study encompassed n=48 students, including 37 women and 11 men. The tests were carried out using such tools as: an EPS/R1 podobarographic mat and the impedance methods – i.e. the InBody 270 body composition analyser. An analysis was performed for the parameters concerning body composition, the distribution of foot pressure on the ground, and the level of body balance. Results: The results obtained revealed statistically significant differences in the physiological parameters of foot arching and the functional efficiency of the body balance system under different measurement conditions that reflected the impact of effort stimuli. Conclusions: Significant differences reflecting the impact of the effort stimuli were expected to be achieved during the mathematical analysis of the results of podobarographic tests that allow for the assessment of the physiological parameters of foot arching and the functional efficiency of the body balance system under different measurement conditions. The authors’ assumption was mathematically and statistically confirmed by significant differences foe most of the parameters arising out of the possibilities offered by the research method applied. Comparative assessment unquestionably revealed a negative change in foot arching, as well as lower body posture stability in the female and male subjects, resulting from the physical exercise applied.


Author(s):  
Kevin Eschen ◽  
Julianna Abel ◽  
Rachael Granberry ◽  
Brad Holschuh

Self-fitting is the ability of a wearable, garment or body-mounted object to recover the exact shape and size of the human body. Self-fitting is highly desirable for wearable applications, ranging from medical and recreational health monitoring to wearable robotics and haptic feedback, because it enables complex devices to achieve accurate body proximity, which is often required for functionality. While garments designed with compliant fabrics can easily accomplish accurate fit for a range of body shapes and sizes, integrated actuators and sensors require fabric stiffness to prevent drift and deflection from the body surface. This paper merges smart materials and structures research with anthropometric analysis and functional apparel methodologies to present a novel, functionally gradient self-fitting garment designed to address the challenge of achieving accurate individual and population fit. This fully functional garment, constructed with contractile SMA knitted actuator fabrics, exhibits tunable %-actuation contractions between 4–50%, exerts minimal on-body pressure (≤ 1333Pa or 10 mmHg), and can be designed to actuate fully self-powered with body heat. The primary challenge in the development of the proposed garment is to design a functionally gradient system that does not exert significant pressure on part of the leg and/or remain oversized in others. Our research presents a new methodology for the design of contractile SMA knitted actuator garments, describes the manufacture of such self-fitting garments, and concludes with an experimental analysis of the garment performance evaluated through three-dimensional marker tracking.


2015 ◽  
Vol 7 (1) ◽  
pp. 10-11 ◽  
Author(s):  
Kewal Krishan ◽  
Tanuj Kanchan

The present commentary refers to recent research on the plantar pressure distribution variation in pre-obese, obese and non-obese adult individuals. While the studies observe significant changes in the contact area in the mid foot region i.e. instep region, no statistically significant differences were observed in the pressure distribution of the fore-foot and hind-foot region among the pre-obese and non-obese groups. Thus, the pressure distribution of the sole of the individuals depends upon the body weight of the individuals. In this commentary, we emphasize that the results of these studies; besides their clinical implications, have applications in forensic sciences especially in the field of forensic podiatry too which is concerned with the examination of pedal evidence recovered at the crime scene.


Author(s):  
H Heravi ◽  
A Ebrahimi ◽  
S Nikzad ◽  
E Olyaee ◽  
Y Salek Zamani

Background: Foot pressure assessment systems are widely used to diagnose foot pathologies. Human foot plays an important role in maintaining the biomechanical function of the lower extremities which includes provision of balance and stabilization of the body during gait.Objective: There are different types of assessment tools with different capabilities which are discussed in detail in this paper. In this project, we introduce a new camera-based pressure distribution estimation system which can give a numerical estimation in addition to giving a visual illustration of pressure distribution of the sole.Material and Methods: In the first step, an image is captured from the traditional Podoscope devices. Then, HMRFEM image segmentation scheme is implemented to extract the contacting part of the sole to the ground. Finally, based on a simple calibration method, per mm2 pressure is estimated to give an accurate pressure distribution measure.Results: A significant and usable estimation of foot pressure has been introduced in this article. The main drawback of introduced systems is low resolution of sensors which is solved using a high resolution camera as a sensor. Another problem is patchy edge extracted by the systems which is automatically solved in the proposed device using an accurate image segmentation algorithm. Also the LCE, GCE and BCE measures demonstrate that lowest error rates are obtained with HMRF segmentation method.Conclusion: we introduced a camera-based plantar pressure assessment tool which uses we introduced a camera-based plantar pressure assessment tool which uses HMRF-EM-based method has been explained in more detail which gives a brilliant sole segmentation from the captured images. Most of the marketable measurement systems use electronic sensors to estimate the pressure distribution, but here we used the captured image and grayscale levels to compute a per pixel pressure which can be converted to N/mm2 scale.


2017 ◽  
Vol 2 (1) ◽  
pp. 14 ◽  
Author(s):  
Harish Kumar Banga ◽  
R.M. Belokar ◽  
Sandip Dhole ◽  
Parveen Kalra ◽  
Rajesh Kumar

The aim of the present study is to clinical gait analysis of normal human and drop foot patients. Gait analysis is the systematic study of <a title="Animal locomotion" href="https://en.wikipedia.org/wiki/Animal_locomotion">animal locomotion</a>, more specifically the study of human motion, using the eye and the brain of observers, augmented by <a title="Instrumentation" href="https://en.wikipedia.org/wiki/Instrumentation">instrumentation</a> for measuring body movements, <a title="Biomechanics" href="https://en.wikipedia.org/wiki/Biomechanics">body mechanics</a>, and the activity of the muscles. Gait analysis is used to assess, plan, and treat individuals with conditions affecting their ability to walk. Foot drop is a deceptively simple name for a potentially complex problem. It can be defined as a significant weakness of ankle and toe dorsiflexion. The foot and ankle dorsiflexors include the tibialis anterior, the extensor hallucis longus (EHL), and the extensor digitorum longus (EDL). These muscles help the body clear the foot during the swing phase and control plantar flexion of the foot at heel strike


Author(s):  
O. Faroon ◽  
F. Al-Bagdadi ◽  
T. G. Snider ◽  
C. Titkemeyer

The lymphatic system is very important in the immunological activities of the body. Clinicians confirm the diagnosis of infectious diseases by palpating the involved cutaneous lymph node for changes in size, heat, and consistency. Clinical pathologists diagnose systemic diseases through biopsies of superficial lymph nodes. In many parts of the world the goat is considered as an important source of milk and meat products.The lymphatic system has been studied extensively. These studies lack precise information on the natural morphology of the lymph nodes and their vascular and cellular constituent. This is due to using improper technique for such studies. A few studies used the SEM, conducted by cutting the lymph node with a blade. The morphological data collected by this method are artificial and do not reflect the normal three dimensional surface of the examined area of the lymph node. SEM has been used to study the lymph vessels and lymph nodes of different animals. No information on the cutaneous lymph nodes of the goat has ever been collected using the scanning electron microscope.


Sign in / Sign up

Export Citation Format

Share Document