Three Dimensional Gait Assessment During Walking of Healthy People and Drop Foot Patients

2017 ◽  
Vol 2 (1) ◽  
pp. 14 ◽  
Author(s):  
Harish Kumar Banga ◽  
R.M. Belokar ◽  
Sandip Dhole ◽  
Parveen Kalra ◽  
Rajesh Kumar

The aim of the present study is to clinical gait analysis of normal human and drop foot patients. Gait analysis is the systematic study of <a title="Animal locomotion" href="https://en.wikipedia.org/wiki/Animal_locomotion">animal locomotion</a>, more specifically the study of human motion, using the eye and the brain of observers, augmented by <a title="Instrumentation" href="https://en.wikipedia.org/wiki/Instrumentation">instrumentation</a> for measuring body movements, <a title="Biomechanics" href="https://en.wikipedia.org/wiki/Biomechanics">body mechanics</a>, and the activity of the muscles. Gait analysis is used to assess, plan, and treat individuals with conditions affecting their ability to walk. Foot drop is a deceptively simple name for a potentially complex problem. It can be defined as a significant weakness of ankle and toe dorsiflexion. The foot and ankle dorsiflexors include the tibialis anterior, the extensor hallucis longus (EHL), and the extensor digitorum longus (EDL). These muscles help the body clear the foot during the swing phase and control plantar flexion of the foot at heel strike

2017 ◽  
Vol 8 (2) ◽  
pp. 337-347 ◽  
Author(s):  
Jorge Barrios-Muriel ◽  
Francisco Javier Alonso Sánchez ◽  
David Rodríguez Salgado ◽  
Francisco Romero-Sánchez

Abstract. Today there is continuous development of wearable devices in various fields such as sportswear, orthotics and personal gadgets, among others. The design of these devices involves the human body as a support environment. Based on this premise, the development of wearable devices requires an improved understanding of the skin strain field of the body segment during human motion. This paper presents a methodology based on a three dimensional digital image correlation (3D-DIC) system to measure the skin strain field and to estimate anatomical lines with minimum deformation as design criteria for the aforementioned wearable devices. The errors of displacement and strain measurement related to 3-D reconstruction and out-of-plane motion are investigated and the results are acceptable in the case of large deformation. This approach can be an effective tool to improve the design of wearable devices in the clinical orthopaedics and ergonomics fields, where comfort plays a key role in supporting the rehabilitation process.


Author(s):  
Ying Yue Zhang ◽  
Gusztáv Fekete ◽  
Justin Fernandez ◽  
Yao Dong Gu

To determine the influence of the unstable sole structure on foot kinematics and provide theoretical basis for further application.12 healthy female subjects walked through a 10-meter experimental channel with normal speed wearing experimental shoes and control shoes respectively at the gait laboratory. Differences between the groups in triplanar motion of the forefoot, rearfoot and hallux during walking were evaluated using a three-dimensional motion analysis system incorporating with Oxford Foot Model (OFM). Compare to contrast group, participants wearing experimental shoes demonstrated greater peak forefoot dorsiflexion, forefoot supination and longer halluces plantar flexion time in support phase. Additionally, participants with unstable sole structure also demonstrated smaller peak forefoot plantarflexion, rearfoot dorsiflexion and range of joint motion in sagittal plane and frontal plane.. The difference mainly appeared in sagittal and frontal plane. With a stimulation of unstable, it may lead to the reinforcement of different flexion between middle and two ends of the foot model. The greater forefoot supination is infered that the unstable element structure may affect the forefoot motion on the frontal plane and has a control effect to strephexopodia people. The stimulation also will reflexes reduce the range of rearfoot motion in sagittal and frontal planes to control the gravity center of the body and keep a steady state in the process of walking.


Author(s):  
Evandro M. Ficanha ◽  
Mohammad Rastgaar ◽  
Barzin Moridian ◽  
Nina Mahmoudian

This article compares the three-dimensional angles of the ankle during step turn and straight walking. We used an infrared camera system ( Qualisys Oqus ®) to track the trajectories and angles of the foot and leg at different stages of the gait. The range of motion (ROM) of the ankle during stance periods was estimated for both straight step and step turn. The duration of combined phases of heel strike and loading response, mid stance, and terminal stance and pre-swing were determined and used to measure the average angles at each combined phase. The ROM in Inversion/Eversion (IE) increased during turning while Medial/Lateral (ML) rotation decreased and Dorsiflexion/Plantarflexion (DP) changed the least. During the turning step, ankle displacement in DP started with similar angles to straight walk (−9.68° of dorsiflexion) and progressively showed less plantarflexion (1.37° at toe off). In IE, the ankle showed increased inversion leaning the body toward the inside of the turn (angles from 5.90° to 13.61°). ML rotation initiated with an increased medial rotation of 5.68° relative to the straight walk transitioning to 12.06° of increased lateral rotation at the toe off. A novel tendon driven transtibial ankle-foot prosthetic robot with active controls in DP and IE directions was fabricated. It is shown that the robot was capable of mimicking the recorded angles of the human ankle in both straight walk and step turn.


1979 ◽  
Vol 101 (4) ◽  
pp. 279-283 ◽  
Author(s):  
T. P. Andriacchi ◽  
S. J. Hampton ◽  
A. B. Schultz ◽  
J. O. Galante

A method for three-dimensional coordinate processing of human motion is presented. The method is well suited for use with opto-electronic data acquisition equipment. A resolution of one part in 500 was achieved over a viewing field of 2.4 m. This resolution was found to be adequate for human gait analysis studies.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Yu-Bin Liu ◽  
Shu-Yun Jiang ◽  
Li Zhao ◽  
Yan Yu ◽  
Xu-Chen Tao ◽  
...  

Background.This study was designed to evaluate the function of the foot undergoing the procedure of percutaneous Achilles tenotomy (PAT) in case of clubfoot management in terms of gait analysis.Methods.Nineteen patients with unilateral clubfeet were retrospectively reviewed from our database from July 2012 to June 2016. The result in all the cases was rated as excellent according to the scale of International Clubfoot Study Group (ICSG). The affected sides were taken as Group CF and the contralateral sides as Group CL. Three-dimensional gait analysis was applied for the functional evaluation of the involved foot.Results.Statistical difference was found in physical parameters of passive ankle dorsiflexion and plantar-flexion. No statistical difference was found in temporal-spatial parameters. There was statistical difference in kinematic parameters of total ankle rotation, ankle range of motion, and internal foot progression angle and in kinetic parameters of peak ankle power. No statistical difference was found in other kinematic and kinetic parameters.Conclusions.It is demonstrated that the procedure of PAT is safe and efficient for correcting the equinus deformity in case of clubfoot management and preserving the main function of Achilles tendon at the minimum of four-year follow-up.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Vidya K. Nandikolla ◽  
Robin Bochen ◽  
Steven Meza ◽  
Allan Garcia

Researchers and clinicians are increasingly using plantar pressure and force measurement system to evaluate foot functions. This research evaluates the quality and reliability of a Tekscan HR mat to study the plantar pressures and forces acting during walking, running, jumping, and standing of healthy subjects. The following regions of the foot were investigated: heel, mid foot, metatarsophalangeal joint, hallux, and the toes. The arches of both feet of the three healthy subjects in the gait analysis were presented which addresses the balancing issues of the body during locomotion. The results indicated that the peaks at the big toe (79.4 ± 8.5 N/cm2, p = 0.0001) were the maximum compared to forefoot (40.3 ± 3.3 N/cm2, p = 0.001), to midfoot (7.5 ± 1.3 N/cm2, p = 0.001), and to heel (27.8 ± 3.9 N/cm2, p = 0.0002) for jump activity. The running activity demonstrated similar results as jump where the maximum peak pressures were absorbed at the big toe region. The heel region during running (86.3 ± 12.6 N/cm2, p = 0.001) showed three times the pressure peak compared to the jump land (27.8 ± 3.9 N/cm2, p = 0.0002) activity. The measurement system proved to be highly capable of detecting heel strike and toe-off moments.


The integration of proper algorithms and computer graphics-based systems seems promising for the design of biomechanical models and the relative motion analysis. Thus, consequences on research fields as gait analysis are gathered, focusing on joints kinematics. Human motion patterns are indeed directly influenced from human model and associated joints parameters, such as centers and axes of rotation. These, as a matter of fact, determine the body segments coordinates systems. Joints parameters are estimated with several methods. The aim of this research is to evaluate the consistency of a functional approach versus a the predictive one. A validation of the algorithm used to estimate the lower limbs joints centers in gait analysis is provided with a proper subject-specific multibody model implemented in OpenSim space. Joints angles are estimated using a global optimization method and a comparison with the gold standard technique is also discussed. Overall the obtained results are consistent for the two different methodologies. The correlation of the curves is excellent in the sagittal plane, and very good in the coronal and transversal plane.


Author(s):  
Vidya K. Nandikolla ◽  
Marco P. Schoen ◽  
Ajay Mahajan

Diabetic Mellitus is a disease caused either due to insufficient insulin produced by the pancreas or the body cells are unable to use the existing insulin. One of the main complications associated with diabetics is neuropathy, which is caused due to complete or partial loss of sensation in the feet and legs that lead to problems like inadequate delivery of nutrients and oxygen to the foot, which will cause healing impairment. In diabetic neuropathic subject, the hardness of foot sole soft tissue gives rise to plantar ulcer development. In this work, a biomechanical model is used to study the plantar distribution of forces in the foot. The dynamic foot pressure distribution during walking is used to carry out a stress analysis. This includes the motion of heel strike, mid-stance, and push off section of the feet during walking. A control strategy is proposed to mitigate the high stress concentration occurring during the walking phase. The control strategy includes a synergy of an adaptive neuro-fuzzy inference controller and for comparison an optimal controller. The actuation is simulated through an external shoe insert. The three-dimensional multi-segment biomechanical model is used in conjunction with experimental data gathered from various literatures for simulation purposes of the proposed control strategy. The proposed intelligent controller focuses on stresses generated by the foot pressure distribution during walking and compares these with stress levels of healthy subjects. The insert changes its shape accordingly to redistribute the pressure levels at various regions so to achieve a pressure distribution equivalent to a healthy subject. It is assumed that the insert can actuate and measure the pressure distribution simultaneously. This could be achieved using smart materials for the shoe insert. The simulation results show the effectiveness of the proposed algorithms and approach.


2021 ◽  
Author(s):  
Kentaro Homan ◽  
Keizo Yamamoto ◽  
Ken Kadoya ◽  
Naoki Ishida ◽  
Norimasa Iwasaki

Abstract Background Use of a wearable gait analysis system (WGAS) is becoming common when conducting gait analysis studies due to its versatility. At the same time, its versatility raises a concern about its accuracy, because its calculations rely on assumptions embedded in its algorithms. The purpose of the present study was to validate all spatiotemporal gait parameters calculated by the WGAS by comparison with simultaneous measurements taken with an optical motion capture system (OMCS). Methods Ten young healthy volunteers wore two inertial sensors of the commercially available WGAS, Physilog®, on their feet and 23 markers for the OMCS on the lower part of the body. The participants performed at least three sets of 10-m walk tests at their self-paced speed in the laboratory equipped with 12 high-speed digital cameras with embedded force plates. To measure repeatability, all participants returned for a second day of testing within two weeks. Results All gait parameters calculated by the WGAS had a significant correlation with the ones determined by the OMCS. Bland and Altman analysis showed that the between-device agreement for all gait parameters was within clinically acceptable limits. The validity of the gait parameters generated by the WGAS was found to be excellent except for two parameters, swing width and maximal heel clearance. The repeatability of the WGAS was excellent when measured between sessions. Conclusion The present study showed that spatiotemporal gait parameters estimated by the WGAS were reasonably accurate and repeatable in healthy young adults, providing a scientific basis for applying this system to clinical studies.


Author(s):  
O. Faroon ◽  
F. Al-Bagdadi ◽  
T. G. Snider ◽  
C. Titkemeyer

The lymphatic system is very important in the immunological activities of the body. Clinicians confirm the diagnosis of infectious diseases by palpating the involved cutaneous lymph node for changes in size, heat, and consistency. Clinical pathologists diagnose systemic diseases through biopsies of superficial lymph nodes. In many parts of the world the goat is considered as an important source of milk and meat products.The lymphatic system has been studied extensively. These studies lack precise information on the natural morphology of the lymph nodes and their vascular and cellular constituent. This is due to using improper technique for such studies. A few studies used the SEM, conducted by cutting the lymph node with a blade. The morphological data collected by this method are artificial and do not reflect the normal three dimensional surface of the examined area of the lymph node. SEM has been used to study the lymph vessels and lymph nodes of different animals. No information on the cutaneous lymph nodes of the goat has ever been collected using the scanning electron microscope.


Sign in / Sign up

Export Citation Format

Share Document