Hybrid Simulation Method for PWB Level Drop Tests
PWB level drop tests are widely used as a standard test method to evaluate the reliability of PWB and packages under drop conditions (JEDEC Standard JESD22-B104-A). The drop height and test setup need be adjusted in order to achieve the requirements of a peak shock of 1500g and an impulse duration of 0.5 ms. Generally, the ground need be covered with a thin layer of rubber pad to absorb some of the impact energy. However, this rubber pad will bring challenges for modelling due to large deformation, nonlinear hyperelasticity, and contact. And sometimes, it may also cause the convergence problem. Therefore, a hybrid drop simulation method was developed. This hybrid method can not only circumvent the difficulties mentioned, but also increase the efficiency and reduce the CPU time of PWB drop simulation. When simulating a PWB board level drop test, generally, not only the PWB and the components assembled on it need be modelled, but also the drop vehicle, rubber pad, and ground should be included in the model. For the hybrid drop simulation, however, only part of drop vehicle need be modeled and there is no need to model the ground and the contact between the ground and the drop vehicle. Then an acceleration time curve measured from drop test is applied to the hybrid model so that the responses of the model will mimic the real drop situation. In this way, not only the simulation time is reduced due to smaller model sizes, but also can some difficulties related to large deformation, contact, and nonlinear material properties be avoided. Finally, a comparison of a bare PWB and a populated PWB drop cases was used to validate this hybrid drop simulation method. A reasonable correlation was achieved.