Characterization of the Noise Emissions of a Passenger Vehicle

Author(s):  
Jose´ Luis San Roma´n ◽  
Vicente Di´az ◽  
Pedro Cobo ◽  
Carolina A´lvarez-Caldas ◽  
Jose´ Antonio Calvo ◽  
...  

One of the main sources of noise pollution in cities is vehicle traffic. In this paper a characterization of the noise emission of a passenger vehicle has been carried out. With this aim a representative driving route for noise emission has been defined in order to study the influence of the driver typology and vehicle type. Therefore, this investigation has been developed in three phases: Firstly, usual driving in an urban area like Madrid has been characterized with a specific driving route. In addition, several vehicle models with great presence in the existing fleet of cars have been selected. Several drivers have covered the driving route at different times of the day and previous parameters have been measured in each test in order to determine average values of behavior. Secondly, the type of vehicles and drivers influence in noise emissions has been deeply analyzed. To achieve this aim a sample of vehicles has been instrumented to obtain physical measurements of the variables that can influence the noise emission level. Positions, velocities, accelerations (longitudinal and lateral) and time have been analyzed using a GPS sensor. Parameters such as, engine speed, engine load, throttle position and engine temperature have been studied through the vehicle CAN BUS and a set of microphones has measured the emitted noise in several points of the vehicle. In order to study the ecological and safety impact in urban and interurban roads by means of the measurement of noise emissions the analysis of the driver behaviour is of paramount importance. To conclude, the previous data has been analyzed and noise equivalent levels have been identified with different test configurations.

Robotica ◽  
2020 ◽  
pp. 1-18
Author(s):  
M. Garcia ◽  
P. Castillo ◽  
E. Campos ◽  
R. Lozano

SUMMARY A novel underwater vehicle configuration with an operating principle as the Sepiida animal is presented and developed in this paper. The mathematical equations describing the movements of the vehicle are obtained using the Newton–Euler approach. An analysis of the dynamic model is done for control purposes. A prototype and its embedded system are developed for validating analytically and experimentally the proposed mathematical representation. A real-time characterization of one mass is done to relate the pitch angle with the radio of displacement of the mass. In addition, first validation of the closed-loop system is done using a linear controller.


2017 ◽  
Vol 46 (40) ◽  
pp. 14012-14020
Author(s):  
Kazuhiro Uemura ◽  
Masahiro Taoka

An intermediate compound of a tetranuclear Pt–Fe⋯Fe–Pt complex in the synthetic process to form a trinuclear Pt–Fe–Pt complex by mixing the “amidate-hanging” Pt mononuclear complex and iron sources was successfully isolated and characterized by single-crystal X-ray analysis and several physical measurements.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Jill A. Nemacheck ◽  
Brandon J. Schemerhorn ◽  
Steven R. Scofield ◽  
Subhashree Subramanyam

Abstract Background The Hessian fly (Mayetiola destructor), belonging to the gall midge family (Cecidomyiidae), is a devastating pest of wheat (Triticum aestivum) causing significant yield losses. Despite identification and characterization of numerous Hessian fly-responsive genes and associated biological pathways involved in wheat defense against this dipteran pest, their functional validation has been challenging. This is largely attributed to the large genome, polyploidy, repetitive DNA, and limited genetic resources in hexaploid wheat. The diploid progenitor Aegilops tauschii, D-genome donor of modern-day hexaploid wheat, offers an ideal surrogate eliminating the need to target all three homeologous chromosomes (A, B and D) individually, and thereby making the functional validation of candidate Hessian fly-responsive genes plausible. Furthermore, the well-annotated sequence of Ae. tauschii genome and availability of genetic resources amenable to manipulations makes the functional assays less tedious and time-consuming. However, prior to utilization of this diploid genome for downstream studies, it is imperative to characterize its physical and molecular responses to Hessian fly. Results In this study we screened five Ae. tauschii accessions for their response to the Hessian fly biotypes L and vH13. Two lines were identified that exhibited a homozygous resistance response to feeding by both Hessian fly biotypes. Studies using physical measurements and neutral red staining showed that the resistant Ae. tauschii accessions resembled hexaploid wheat in their phenotypic responses to Hessian fly, that included similarities in larval developmental stages, leaf and plant growth, and cell wall permeability. Furthermore, molecular responses, characterized by gene expression profiling using quantitative real-time PCR, in select resistant Ae. tauschii lines also revealed similarities with resistant hexaploid wheat. Conclusions Phenotypic and molecular characterization of Ae. tauschii to Hessian fly infestation revealed resistant accessions that shared similarities to hexaploid wheat. Resembling the resistant hexaploid wheat, the Ae. tauschii accessions mount an early defense strategy involving defense proteins including lectins, secondary metabolites and reactive oxygen species (ROS) radicals. Our results reveal the suitability of the diploid progenitor for use as an ideal tool for functional genomics research in deciphering the wheat-Hessian fly molecular interactions.


Author(s):  
Ryszard J. Pryputniewicz ◽  
Emily J. Pryputniewicz

Development of microelectromechanical system (MEMS) sensors for various applications requires the use of analytical and computational modeling/simulation coupled with rigorous physical measurements. This requirement has led to advancement of an approach that combines computer aided design (CAD) and multiphysics modeling/simulation tools with the state-of-the-art (SOTA) measurement methodology to facilitate reduction of high prototyping costs, long product development cycles, and time-to-market pressures while devising MEMS for a variety of applications. In this approach, a unique, fully integrated software environment for multiscale, multiphysics, high fidelity modeling of MEMS is combined with the optoelectronic laser interferometric microscope methodology for quantitative measurements. The optoelectronic methodology allows remote, noninvasive full-field-of view (FFV) measurements of deformations/motions (under operating conditions) with high spatial resolution, nanometer accuracy, and in near real-time. In this paper, both, the modeling environment (including an analytical process used to quantitatively show the influence that various parameters defining a sensor have on its dynamics — using this process dynamic characteristics of a sensor can be optimized by constraining its nominal dimensions and finding the optimum set of uncertainties in these dimensions that best satisfy design requirements/specifications) and the optoelectronic methodology are described and their applications are illustrated with representative examples demonstrating viability of the approach, combining modeling and measurements, for quantitative characterization of microsystem dynamics. These representative examples demonstrate capability of the approach described herein to quantitatively determine effects of dynamic loads on performance of selected MEMS.


2019 ◽  
Vol 7 (12) ◽  
pp. 465 ◽  
Author(s):  
Zhigao Dang ◽  
Zhaoyong Mao ◽  
Baowei Song ◽  
Wenlong Tian

Operating horizontal axis hydrokinetic turbine (HAHT) generates noise affecting the ocean environment adversely. Therefore, it is essential to determine the noise characteristics of such types of HAHT, as large-scale turbine sets would release more noise pollution to the ocean. Like other rotating machinery, the hydrodynamic noise generated by the rotating turbine has been known to be the most important noise source. In the present work, the transient turbulent flow field of the HAHT is obtained by incompressible large eddy simulation, thereafter, the Ffowcs Williams and Hawkings acoustic analogy formulation is carried out to predict the noise generated from the pressure fluctuations of the blade surface. The coefficient of power is compared with the experimental results, with a good agreement being achieved. It is seen from the pressure contours that the 80% span of the blade has the most severe pressure fluctuations, which concentrate on the region of leading the edge of the airfoil and the suction surface of the airfoil. Then, the noise characteristics around a single turbine are systematically studied, in accordance with the results of the flow field. The noise characteristics around the whole turbine are also investigated to determine the directionality of the noise emission of HAHT.


2014 ◽  
Vol 41 (6Part1) ◽  
pp. 061901 ◽  
Author(s):  
Stephanie M. Leon ◽  
Libby F. Brateman ◽  
Louis K. Wagner

2019 ◽  
Vol 8 (1) ◽  
pp. 34-52
Author(s):  
Elena Lezhneva ◽  
Katerina Vakulenko ◽  
Andrii Galkin

Abstract The problem of combating urban noise is closely linked to the rational transformation of the urban environment, which must go through the elimination or reduction of the number of sources of noise, the localization of the noise emission zone, reducing the level of sound sources and protection against noise for the residential areas. Theoretical and experimental studies of acoustic loading on the territory along the highway for the typical section of the urban territory have been conducted. To estimate the complex noise impact from all sources and from individual sources, as well as to predict the total noise exposure for this site, a noise map was constructed using software. As a measure to combat traffic noise in the territory along the highway, the location of the noise protection screen was justified, taking into account the loss of part of the national income as a result of the continuous impact of noise on a person.The results of the research allow to assess the degree of technogenic impact of noise pollution during the operation of the highway, which allows regulating, by administrative and legislative methods, the nature of the impact on natural objects and human health of certain types of activities, as well as reasonably proposing measures that ensure environmental safety when organizing urban streets traffic.


2021 ◽  
Vol 49 (4) ◽  
pp. 324-332
Author(s):  
Sushmitha Ramireddy ◽  
Vineethreddy Ala ◽  
Ravishankar KVR ◽  
Arpan Mehar

The acceleration and deceleration rates vary from one vehicle type to another. The same vehicle type also exhibits variations in acceleration and deceleration rates due to vast variation in their dynamic and physical characteristics, ratio between weight and power, driver behaviour during acceleration and deceleration manoeuvres. Accurate estimation of acceleration and deceleration rates is very important for proper signal design to ensure minimum control delay for vehicles, which are passing through the intersection. The present study measures acceleration and deceleration rates for four vehicle categories: Two-wheeler, Three-wheeler, Car, and Light Commercial Vehicle (LCV), by using Open Street Map (OSM) tracker mobile application. The acceleration and deceleration rates were measured at 24 signalized intersection approaches in Hyderabad and Warangal cities. The study also developed acceleration and deceleration models for each vehicle type and the developed models were validated based on field data. The results showed that the predicted acceleration and deceleration models showed close relation with those measured in the field. The developed models are useful in predicting average acceleration and deceleration rate for different vehicle types under mixed and poor lane disciplined traffic conditions.


Sign in / Sign up

Export Citation Format

Share Document