Particle Resuspension From Carpeted Floorings in Indoor Environment in Turbulent Flows

Author(s):  
Iman Goldasteh ◽  
Goodarz Ahmadi ◽  
Andrea Ferro

Particle resuspension is an important source of particulate matter in the indoor environment. [1] In this study, a model for resuspension of spherical particles from carpet fibers was developed using the micro-roughness model for simulating the adhesion of rough spherical particles. The Johnson-Kendall-Roberts (JKR) adhesion model was used for modeling the adhesion force between particles and carpet fibers. Adhesion of pollen particles to the carpet fibers was studied, and the pull-off forces predicted by the model are compared with the available experimental data. The effect of the hydrodynamic force of fluid flow on resuspension of particles under turbulent flow conditions was studied and the effect of turbulence bursts was included in the model. In particular, the range of airflow velocity for resuspension of pollen particles from carpet was evaluated and the results are presented in graphical form. The role of airflow on resuspension of particles from carpeted floorings is discussed.

1989 ◽  
Vol 61 (03) ◽  
pp. 485-489 ◽  
Author(s):  
Eva Bastida ◽  
Lourdes Almirall ◽  
Antonio Ordinas

SummaryBlood platelets are thought to be involved in certain aspects of malignant dissemination. To study the role of platelets in tumor cell adherence to vascular endothelium we performed studies under static and flow conditions, measuring tumor cell adhesion in the absence or presence of platelets. We used highly metastatic human adenocarcinoma cells of the lung, cultured human umbilical vein endothelial cells (ECs) and extracellular matrices (ECM) prepared from confluent EC monolayers. Our results indicated that under static conditions platelets do not significantly increase tumor cell adhesion to either intact ECs or to exposed ECM. Conversely, the studies performed under flow conditions using the flat chamber perfusion system indicated that the presence of 2 × 105 pl/μl in the perfusate significantly increased the number of tumor cells adhered to ECM, and that this effect was shear rate dependent. The maximal values of tumor cell adhesion were obtained, in presence of platelets, at a shear rate of 1,300 sec-1. Furthermore, our results with ASA-treated platelets suggest that the role of platelets in enhancing tumor cell adhesion to ECM is independent of the activation of the platelet cyclooxygenase pathway.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1787
Author(s):  
Leena J. Shevade ◽  
Franco A. Montalto

Green infrastructure (GI) is viewed as a sustainable approach to stormwater management that is being rapidly implemented, outpacing the ability of researchers to compare the effectiveness of alternate design configurations. This paper investigated inflow data collected at four GI inlets. The performance of these four GI inlets, all of which were engineered with the same inlet lengths and shapes, was evaluated through field monitoring. A forensic interpretation of the observed inlet performance was conducted using conclusions regarding the role of inlet clogging and inflow rate as described in the previously published work. The mean inlet efficiency (meanPE), which represents the percentage of tributary area runoff that enters the inlet was 65% for the Nashville inlet, while at Happyland the NW inlet averaged 30%, the SW inlet 25%, and the SE inlet 10%, considering all recorded events during the monitoring periods. The analysis suggests that inlet clogging was the main reason for lower inlet efficiency at the SW and NW inlets, while for the SE inlet, performance was compromised by a reverse cross slope of the street. Spatial variability of rainfall, measurement uncertainty, uncertain tributary catchment area, and inlet depression characteristics are also correlated with inlet PE. The research suggests that placement of monitoring sensors should consider low flow conditions and a strategy to measure them. Additional research on the role of various maintenance protocols in inlet hydraulics is recommended.


2012 ◽  
Vol 7 (4) ◽  
pp. 045007 ◽  
Author(s):  
Sanjukta Guha Thakurta ◽  
Robert Miller ◽  
Anuradha Subramanian

1979 ◽  
Author(s):  
P.D. Richardson

Thrombocyte adhesion and aggregation in a vessel or on a chamber wall can be measured most readily if the flow is controlled and steady, and continuous observation is used. Videotape recording is very helpful for subsequent quantification of the dynamics. The adhesion of each thrombocyte can occur for a finite time interval:this interval has been observed to have a wide range. Platelets which escape often leave open a site which attracts other platelets preferentially. The rate of change of adhesion density (platelets/mm2) is affected by the local shear rate and the shear history upstream. Aggregation is affected similarly, and also proceeds with some platelet turnover. The role of erythrocytes in facilitating cross-stream migration of thrombocytes (which can enhance the growth rate of large thrombi) appears due in part to convective flow fields induced by the motion of erythrocytes in a shear flow, which can be demonstrated theoretically and experimentally. Observations of the phenomenlogy of adhesion and aggregation under controlled flow conditions and comparison with fLu id-dynamically based theory allows representation in terras of a small number of parameters with prospects of prediction of behaviour over a wide range of haemodynamic conditions; biochemical changes lead to changes in values of the parameters, so that activating agents and inhibiting agents modify values in different directions.


2008 ◽  
Vol 7 (2) ◽  
pp. 406-419 ◽  
Author(s):  
G. Gargiulo ◽  
S. A. Bradford ◽  
J. Simunek ◽  
P. Ustohal ◽  
H. Vereecken ◽  
...  

2001 ◽  
Vol 58 (1) ◽  
pp. 86-98 ◽  
Author(s):  
Anna Metaxas

For marine benthic invertebrates with meroplanktonic larvae, the relative importance of hydrodynamics and swimming behaviour in determining larval dispersal in the water column, particularly at small spatial scales, has not been determined. In the field, larval aggregations recorded at physical and biological discontinuities in the water column were attributed to hydrodynamics. Similar aggregations obtained in the absence of flow in the laboratory indicate a potentially significant role of behaviour. At large spatial scales, larval distribution in the plankton is mainly regulated by horizontal advection. However, the ability of larvae to behaviourally regulate their position at scales of micrometres to metres when exposed to turbulent fluid motion in the water column, as evidenced in the benthic boundary layer, is unknown. Evaluation of swimming in turbulent flows in the water column is an intriguing area of research, which involves several constraints. In the field, quantification of behaviour is limited by low success in tracking larvae and lack of appropriate observational tools. In the laboratory, the generation and quantification of flow regimes that are representative of those in the field remains a challenge. An approach that integrates biological and physical measurements within realistic ranges is necessary to advance our understanding of larval dispersal.


2004 ◽  
Vol 70 (12) ◽  
pp. 7418-7425 ◽  
Author(s):  
Stephen M. Hunt ◽  
Erin M. Werner ◽  
Baochuan Huang ◽  
Martin A. Hamilton ◽  
Philip S. Stewart

ABSTRACT A combination of experimental and theoretical approaches was used to investigate the role of nutrient starvation as a potential trigger for biofilm detachment. Experimental observations of detachment in a variety of biofilm systems were made with pure cultures of Pseudomonas aeruginosa. These observations indicated that biofilms grown under continuous-flow conditions detached after flow was stopped, that hollow cell clusters were sometimes observed in biofilms grown in flow cells, and that lysed cells were apparent in the internal strata of colony biofilms. When biofilms were nutrient starved under continuous-flow conditions, detachment still occurred, suggesting that starvation and not the accumulation of a metabolic product was responsible for triggering detachment in this particular system. A cellular automata computer model of biofilm dynamics was used to explore the starvation-dependent detachment mechanism. The model predicted biofilm structures and dynamics that were qualitatively similar to those observed experimentally. The predicted features included centrally located voids appearing in sufficiently large cell clusters, gradients in growth rate within these clusters, and the release of most of the biofilm with simulated stopped-flow conditions. The model was also able to predict biofilm sloughing resulting solely from this detachment mechanism. These results support the conjecture that nutrient starvation is an environmental cue for the release of microbes from a biofilm.


1964 ◽  
Vol 206 (5) ◽  
pp. 951-954 ◽  
Author(s):  
Oliver Carrier ◽  
James R. Walker ◽  
Arthur C. Guyton

The role of oxygen in control of local blood flow was investigated in isolated arterial segments 1 cm in length and 0.5–1.0 mm in diameter by perfusion with blood of various Po2 levels. A decrease in vascular resistance always occurred when the Po2 was lowered and an increase occurred when it was raised. In 20 vessels, using constant-pressure perfusion, an average increase in conductance of 2.38 times normal level was obtained when the Po2 was lowered from 100 to 30 mm Hg. When this datum was plotted according to initial flow, the smaller vessels gave the greatest response to low oxygen (2.73 times normal; sem ± 0.15), whereas the largest gave the least (1.76 times normal; sem ± 0.10). Forty-three vessels perfused under constant-flow conditions gave results which were consistent with and confirmed the constant-pressure results. In all of these experiments pH, Pco2, and temperature were monitored and kept at physiological levels. The results indicate that oxygen could well be a factor in the autoregulation of blood flow.


Sign in / Sign up

Export Citation Format

Share Document