Stability Analysis of a Complex Geared Rotor-Bearing System in a Turbine Reduction Gearbox

Author(s):  
Yuanhong Guan ◽  
Edward W. Sieveking ◽  
Varad Sampathkumar

It is well known that the rotor system will meet several critical speeds or unstable regions as its rotation speed increases, especially when the rotor system is supported by journal bearings, since there exists a strong fluid-structure coupling which is rather prone to stability issues. Stability analysis of rotor-bearing systems (such as turbine-compressor) has been extensively studied in the literatures over the past 50 years. However, few studies have been performed on geared rotor-bearing systems, especially for complex multi-stage gear train systems. In this paper, the abnormal noise/vibration problem on a high speed 2 stage epicyclic reduction gearbox of a turbine-generator system is studied. This gearbox showed abnormal low frequency vibrations at low speed cranking and high speed partial load conditions. Further detailed probe testing showed that the gear bodies which were supported by 6 journal bearings had quite large sub-synchronized vibrations and shaft whirls were developed when the abnormal noise was present. In order to better understand the root cause and to fully eliminate such low frequency noise/vibration, a detailed finite element model for the whole turbine-gearbox-generator was developed under different speed / load conditions. The linearized journal bearing stiffness and damping matrix were calculated using a separate tool and then plugged into the above FE model. The gears are modeled as rigid bodies and connected by gear mesh stiffness. Gyroscopic force terms have also been included in the model. The stability of the whole system was evaluated by a complex eigenvalue analysis and the stability margin evaluated by the corresponding damping factor (or log decrement). The model predicts a range of instability regions and has good correlation with testing data. The root cause of this abnormal noise/vibration is due to the strong torsional-lateral coupling of gear systems, and further coupling with the fluid dynamics of the journal bearings under certain speed/load conditions. Some sensitivity studies are also performed in order to increase the stability margin and eliminate the sub-synchronized vibrations.

2019 ◽  
Vol 71 (1) ◽  
pp. 31-39
Author(s):  
Subrata Das ◽  
Sisir Kumar Guha

Purpose The purpose of this paper is to investigate the effect of turbulence on the stability characteristics of finite hydrodynamic journal bearing lubricated with micropolar fluid. Design/methodology/approach The non-dimensional transient Reynolds equation has been solved to obtain the non-dimensional pressure field which in turn used to obtain the load carrying capacity of the bearing. The second-order equations of motion applicable for journal bearing system have been solved using fourth-order Runge–Kutta method to obtain the stability characteristics. Findings It has been observed that turbulence has adverse effect on stability and the whirl ratio at laminar flow condition has the lowest value. Practical implications The paper provides the stability characteristics of the finite journal bearing lubricated with micropolar fluid operating in turbulent regime which is very common in practical applications. Originality/value Non-linear stability analysis of micropolar fluid lubricated journal bearing operating in turbulent regime has not been reported in literatures so far. This paper is an effort to address the problem of non-linear stability of journal bearings under micropolar lubrication with turbulent effect. The results obtained provide useful information for designing the journal bearing system for high speed applications.


2013 ◽  
Vol 572 ◽  
pp. 636-639
Author(s):  
Xi Chen ◽  
Gang Wang

This paper deals with the walking stability analysis of a multi-legged crablike robot over slope using normalized energy stability margin (NESM) method in order to develop a common stabilization description method and achieve robust locomotion for the robot over rough terrains. The robot is simplified with its static stability being described by NESM. The mathematical model of static stability margin is built so as to carry out the simulation of walking stability over slope for the crablike robot that walks in double tetrapod gait. As a consequence, the relationship between stability margin and the height of the robots centroid, as well as its inclination relative to the ground is calculated by the stability criterion. The success and performance of the stability criterion proposed is verified through MATLAB simulation and real-world experiments using multi-legged crablike robot.


2000 ◽  
Vol 123 (3) ◽  
pp. 651-654 ◽  
Author(s):  
K. Raghunandana ◽  
B. C. Majumdar, and ◽  
R. Maiti

The purpose of this paper is to study the effect of non-Newtonian lubricant on the stability of oil film journal bearings mounted on flexible support using linear perturbation technique. The model of non-Newtonian lubricant developed by Dien and Elrod is taken into consideration. The dynamic co-coefficients are calculated for different values of power law index and length to diameter ratio. These are then used to find stability margin for different support parameters to study the effect of the non-Newtonian lubricant.


2011 ◽  
Vol 2-3 ◽  
pp. 728-732
Author(s):  
Chao Feng Li ◽  
Guang Chao Liu ◽  
Qin Liang Li ◽  
Bang Chun Wen

Multiple freedom degrees model of rotor-bearing system taking many factors into account is established, the Newmark-β and shooting method are combined during the stability analysis of periodic motion in such system. The paper focused on the influence law of two eccentric phase difference on the instability speed of rotor-bearing system. The results have shown that the instability speed rises constantly with the eccentric phase difference angle increasing in small eccentricity system. When the two unbalance be in opposite direction, the system reached its maximum instability speed. However, the unstable bifurcation generates mutation phenomenon for large eccentricity system with the eccentric phase difference angle increasing. In summary, the larger initial phase angle can inhibit system instability partly. The conclusions have provided a theoretical reference for vibration control and stability design of the more complex rotor-bearing system.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5307
Author(s):  
Yeying Tao ◽  
Wei Jiang ◽  
Bin Han ◽  
Xiaoqing Li ◽  
Ying Luo ◽  
...  

A piecewise frequency control (PFC) strategy is proposed in this paper for coordinating vibration isolation and positioning of supporting systems under complex disturbance conditions, such as direct and external disturbances. This control strategy is applied in an active-passive parallel supporting system, where relative positioning feedback for positioning and absolute velocity feedback for active vibration isolation. The analysis of vibration and deformation transmissibility shows that vibration control increases low-frequency position error while positioning control amplifies high-frequency vibration amplitude. To overcome this contradiction across the whole control bandwidth, a pair of Fractional-Order Filters (FOFs) is adopted in the PFC system, which increases the flexibility in the PFC design by introducing fraction orders. The system stability analysis indicates that the FOFs can provide a better stability margin than the Integral-Order Filters (IOFs), so the control gains are increased to get a better performance on the AVI and positioning. The PFC based on FOFs can suppress the peak amplitude at the natural frequency which cannot be avoided when using the IOFs. The constrained nonlinear multivariable function is formed by the required performance and the stability of the system, then the controller parameters are optimized effectively. Lastly, the effectiveness of the proposed method is verified by experiments.


Author(s):  
Ram Turaga

The influence of deterministic surface texture on the sub-synchronous whirl stability of a rigid rotor has been studied. Non-linear transient stability analysis has been performed to study the stability of a rigid rotor supported on two symmetric journal bearings with a rectangular dimple of large aspect ratio. The surface texture parameters considered are dimple depth to minimum film thickness ratio and the location of the dimple on the bearing surface. Journal bearings of different Length to diameter ratios have been studied. The governing Reynolds equation for finite journal bearings with incompressible fluid has been solved using the Finite Element Method under isothermal conditions. The trajectories of the journal center have been obtained by solving the equations of motion of the journal center by the fourth-order Runge-Kutta method. When the dimple is located in the raising part of the pressure curve the positive rectangular dimple is seen to decrease the stability whereas the negative rectangular dimple is seen to improve the stability of the rigid rotor.


2016 ◽  
Vol 68 (3) ◽  
pp. 386-391 ◽  
Author(s):  
Abhishek Ghosh ◽  
Sisir Kumar Guha

Purpose Several researchers have observed that to satisfy modern day’s need, it is essential to enhance the characteristics of journal bearing, which is used in numerous applications. Moreover, the use of Newtonian fluid as a lubricant is diminishing day by day, and the use of Non-Newtonian fluids is coming more into picture. Furthermore, if turbo-machinery applications are taken into account, then it can be seen that journal bearings are used for high speed applications as well. Thus, neglecting turbulent conditions may lead to erroneous results. Hence, this paper aims to present focuses on studying the stability characteristics of finite hydrodynamic journal bearing under turbulent coupled-stress lubrication. Design/methodology/approach First, the governing equation relevant to the problem is generated. Then, the dynamic analysis is carried out by linear perturbation technique, leading to three perturbed equations, which are again discretized by finite difference method. Finally, these discretized equations are solved with the help of Gauss-Seidel Iteration technique with successive over relaxation scheme. Consequently, the film response coefficients and the stability parameters are evaluated at different parametric conditions. Findings It has been concluded from the study that with increase in value of the coupled-stress parameter, the stability of the journal may increase. Whereas, with increase in Reynolds number, the stability of the journal decreases. On the other hand, stability increases with increasing values of slenderness ratio. Originality/value Researches have been performed to study the dynamic characteristics of journal bearing with non-Newtonian fluid as the lubricant. But in the class of non-Newtonian lubricants, the use of coupled-stress fluid has not yet been properly investigated. So, an attempt has been made to perform the stability analysis of bearings with coupled-stress fluid as the advanced lubricant.


Author(s):  
Katsuhisa Fujita ◽  
Atsuhiko Shintani ◽  
Koji Yoshioka ◽  
Kouhei Okuno ◽  
Hiroaki Tanaka ◽  
...  

Recently, in many areas such as computers and information equipments etc., the fluid journal bearings are required to rotate at higher speed. To satisfy this requirement, the strictly stability analysis of the journal is indispensable. In this paper, we investigate the stability analysis of the dynamic behavior of the fluid plain journal bearing with an incompressible fluid considering the nonlinear terms of fluid forces. The stability analysis is examined by the numerical simulations on each model of a rigid rotor and a flexible rotor. The stable regions by nonlinear analysis are compared with the regions by classical linear analysis. Performing the nonlinear simulation analysis, it becomes clear that there is rather a stable region which amplitude does not grow up abruptly, and this phenomenon can not only be pointed out, but also is judged to be unstable by linear stable analysis. Finally, the experiment using actual bearings is performed and compared with the numerical results.


Author(s):  
Sanyam Sharma ◽  
Chimata M Krishna

The plain circular journal bearings are not found to be stable by researchers when used in high speed rotating machineries. Hence, extensive research in the study of stability characteristics of non-circular bearings or lobed bearings assumed importance, of late. Present article deals with the stability analysis of non-circular offset bearing by taking selected set of input and output parameters. Modified Reynolds equation for micropolar lubricated rigid journal bearing system is solved using finite element method. Two kinds of input parameters namely, offset factors (0.2, 0.4) and aspect ratios (1.6, 2.0) have been selected for the study. The important output characteristics such as load, critical mass, whirl frequency ratio, and threshold speed are computed and plotted for various set of values of input parameters. The results obtained indicate that micropolar lubricated circular offset bearing is highly stable for higher offset factor and higher aspect ratio.


Sign in / Sign up

Export Citation Format

Share Document