scholarly journals Simulation of Heat Transport in Graphene Nanoribbons Using the Ab-Initio Scattering Operator

Author(s):  
Colin D. Landon ◽  
Nicolas G. Hadjiconstantinou

We present a deviational Monte Carlo method for simulating phonon transport in graphene using the ab initio 3-phonon scattering operator. This operator replaces the commonly used relaxation-time approximation, which is known to neglect, among other things, coupling between out of equilibrium states that are particularly important in graphene. Phonon dispersion relations and transition rates are obtained from density functional theory calculations. The proposed method provides, for the first time, means for obtaining solutions of the Boltzmann transport equation with ab initio scattering for time- and spatially-dependent problems. The deviational formulation ensures that simulations are computationally feasible for arbitrarily small temperature differences; within this formulation, the ab initio scattering operator is treated using an efficient stochastic algorithm which, in the limit of large number of states, outperforms the more traditional deterministic methods used in solutions of the homogeneous Boltzmann equation. We use the proposed method to study heat transport in graphene ribbons.

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Lina Yang ◽  
Austin J. Minnich

Abstract Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials.


Author(s):  
Dhruv Singh ◽  
Jayathi Y. Murthy ◽  
Timothy S. Fisher

This paper examines the thermodynamic and thermal transport properties of the 2D graphene lattice. The interatomic interactions are modeled using the Tersoff interatomic potential and are used to evaluate phonon dispersion curves, density of states and thermodynamic properties of graphene as functions of temperature. Perturbation theory is applied to calculate the transition probabilities for three-phonon scattering. The matrix elements of the perturbing Hamiltonian are calculated using the anharmonic interatomic force constants obtained from the interatomic potential as well. An algorithm to accurately quantify the contours of energy balance for three-phonon scattering events is presented and applied to calculate the net transition probability from a given phonon mode. Under the linear approximation, the Boltzmann transport equation (BTE) is applied to compute the thermal conductivity of graphene, giving spectral and polarization-resolved information. Predictions of thermal conductivity for a wide range of parameters elucidate the behavior of diffusive phonon transport. The complete spectral detail of selection rules, important phonon scattering pathways, and phonon relaxation times in graphene are provided, contrasting graphene with other materials, along with implications for graphene electronics. We also highlight the specific scattering processes that are important in Raman spectroscopy based measurements of graphene thermal conductivity, and provide a plausible explanation for the observed dependence on laser spot size.


Author(s):  
James M. Loy ◽  
Dhruv Singh ◽  
Jayathi Y. Murthy

Self-heating has emerged as a critical bottleneck to scaling in modern transistors. In simulating heat conduction in these devices, it is important to account for the granularity of phonon transport since electron-phonon scattering occurs preferentially to select phonon groups. However, a complete accounting for phonon dispersion, polarization and scattering is very expensive if the Boltzmann transport equation (BTE) is used. Moreover, difficulties with convergence are encountered when the phonon Knudsen number becomes small. In this paper we simulate a two-dimensional bulk MOSFET hotspot problem using a partially-implicit hybrid BTE-Fourier solver which is significantly less expensive than a full BTE solution, and which shows excellent convergence characteristics. Volumetric heat generation from electron-phonon collisions is taken from a Monte Carlo simulation of electron transport and serves as a heat source term in the governing transport equations. The hybrid solver is shown to perform well in this highly non-equilibrium situation, matching the solutions obtained from a pure all-BTE solution, but at significantly lower computational cost. The paper establishes that this new model and solution methodology are viable for the simulation of thermal transport in other emerging transistor designs and in other nanotechnology applications as well.


2021 ◽  
Vol 871 ◽  
pp. 203-207
Author(s):  
Jian Liu

In this work, we use first principles DFT calculations, anharmonic phonon scatter theory and Boltzmann transport method, to predict a comprehensive study on the thermoelectric properties as electronic and phonon transport of layered LaSe2 crystal. The flat-and-dispersive type band structure of LaSe2 crystal offers a high power factor. In the other hand, low lattice thermal conductivity is revealed in LaSe2 semiconductor, combined with its high power factor, the LaSe2 crystal is considered a promising thermoelectric material. It is demonstrated that p-type LaSe2 could be optimized to exhibit outstanding thermoelectric performance with a maximum ZT value of 1.41 at 1100K. Explored by density functional theory calculations, the high ZT value is due to its high Seebeck coefficient S, high electrical conductivity, and low lattice thermal conductivity .


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiawei Zhou ◽  
Hyun D. Shin ◽  
Ke Chen ◽  
Bai Song ◽  
Ryan A. Duncan ◽  
...  

AbstractAs a foundational concept in many-body physics, electron–phonon interaction is essential to understanding and manipulating charge and energy flow in various electronic, photonic, and energy conversion devices. While much progress has been made in uncovering how phonons affect electron dynamics, it remains a challenge to directly observe the impact of electrons on phonon transport, especially at environmental temperatures. Here, we probe the effect of charge carriers on phonon heat transport at room temperature, using a modified transient thermal grating technique. By optically exciting electron-hole pairs in a crystalline silicon membrane, we single out the effect of the phonon–carrier interaction. The enhanced phonon scattering by photoexcited free carriers results in a substantial reduction in thermal conductivity on a nanosecond timescale. Our study provides direct experimental evidence of the elusive role of electron–phonon interaction in phonon heat transport, which is important for understanding heat conduction in doped semiconductors. We also highlight the possibility of using light to dynamically control thermal transport via electron–phonon coupling.


2005 ◽  
Vol 127 (7) ◽  
pp. 713-723 ◽  
Author(s):  
Sreekant V. J. Narumanchi ◽  
Jayathi Y. Murthy ◽  
Cristina H. Amon

The problem of self-heating in microelectronic devices has begun to emerge as a bottleneck to device performance. Published models for phonon transport in microelectronics have used a gray Boltzmann transport equation (BTE) and do not account adequately for phonon dispersion or polarization. In this study, the problem of a hot spot in a submicron silicon-on-insulator transistor is addressed. A model based on the BTE incorporating full phonon dispersion effects is used. A structured finite volume approach is used to solve the BTE. The results from the full phonon dispersion model are compared to those obtained using a Fourier diffusion model. Comparisons are also made to previously published BTE models employing gray and semi-gray approximations. Significant differences are found in the maximum hot spot temperature predicted by the different models. Fourier diffusion underpredicts the hot spot temperature by as much as 350% with respect to predictions from the full phonon dispersion model. For the full phonon dispersion model, the longitudinal acoustic modes are found to carry a majority of the energy flux. The importance of accounting for phonon dispersion and polarization effects is clearly demonstrated.


2016 ◽  
Vol 71 (2) ◽  
pp. 135-143
Author(s):  
Yasemin Ö. Çiftci ◽  
Cansu Çoban

AbstractThe structural, mechanical, electronic, dynamic, and optical properties of the ZrPdSn compound crystallising into the MgAgAs structure are investigated by the ab initio calculations based on the density functional theory. The lattice constant, bulk modulus, and first derivative of bulk modulus were obtained by fitting the calculated total energy-atomic volume results to the Murnaghan equation of state. These results were compared to the previous data. The band structure and corresponding density of states (DOS) were also calculated and discussed. The elastic properties were calculated by using the stress-strain method, which shows that the MgAgAs phase of this compound is mechanically stable. The presented phonon dispersion curves and one-phonon DOS confirms that this compound is dynamically stable. In addition, the heat capacity, entropy, and free energy of ZrPdSn were calculated by using the phonon frequencies. Finally, the optical properties, such as dielectric function, reflectivity function, extinction coefficient, refractive index, and energy loss spectrum, were obtained under different pressures.


2016 ◽  
Vol 139 (3) ◽  
Author(s):  
Flavio F. M. Sabatti ◽  
Stephen M. Goodnick ◽  
Marco Saraniti

A Monte Carlo rejection technique for numerically solving the complete, nonlinear phonon Boltzmann transport equation (BTE) is presented in this work, including three particles interactions. The technique has been developed to explicitly model population-dependent scattering within a full-band cellular Monte Carlo (CMC) framework, to simulate phonon transport in semiconductors, while ensuring conservation of energy and momentum for each scattering event within gridding error. The scattering algorithm directly solves the many-body problem accounting for the instantaneous distribution of the phonons. Our general approach is capable of simulating any nonequilibrium phase space distribution of phonons using the full phonon dispersion without the need of approximations used in previous Monte Carlo simulations. In particular, no assumptions are made on the dominant modes responsible for anharmonic decay, while normal and umklapp scattering are treated on the same footing. In this work, we discuss details of the algorithmic implementation of both the three-particle scattering for the treatment of the anharmonic interactions between phonons, as well as treating isotope and impurity scattering within the same framework. The simulation code was validated by comparison with both analytical and experimental results; in particular, the simulation results show close agreement with a wide range of experimental data such as thermal conductivity as function of the isotopic composition, the temperature, and the thin-film thickness.


Author(s):  
NGUYEN TIEN CUONG ◽  
HIROSHI MIZUTA ◽  
BACH THANH CONG ◽  
NOBUO OTSUKA ◽  
DAM HIEU CHI

Graphene is a promising candidate as a material used in nano-scale devices because of recent developments in advanced experimental techniques. Motivated by recent successful fabrications of U-shaped graphene channel transistors by using the gallium focused ion beam technology, we have performed ab-initio calculations to investigate the electronic properties and quantum transport in U-shaped graphene nanoribbons. The electronic properties are calculated using a numerical atomic orbital basis set in the framework of the density functional theory. The transport properties are investigated using the non-equilibrium Green's function method. The transmission spectra of U-shaped graphenes are analyzed in order to reveal the quantum transport of the systems. We found that the graphene nanoribbons tend to open a band gap when U-shaped structures are formed in both armchair and zigzag cases. The geometrical structures of U-shaped GNRs had enormous influences on the electron transport around the Fermi energy due to the formation of quasi-bound states at zigzag edges. The obtained results have provided valuable information for designing potential nano-scale devices based on graphenes.


2018 ◽  
Vol 1 (1) ◽  
pp. 161-180 ◽  
Author(s):  
Bahaa Ilyas ◽  
Badal Elias

The way elementary excitations work together with their couplings and interact as condensed matter systems is very important when designing optimum energy-conversion devices. We investigated the electronic structure of LaAlO3, and we show that the bandgap insulator of LaAlO3 obtained theoretically by the hybrid functional HSE06 is an indirect 5.649eV that show a very good agreement with experimental data. The lattice constant is obtained exactly as experiment. In thermos-electric materials, the concept of conversion-efficiency (heat to electricity) is improved instantly by suppressing the phonon quasi-particles propagations that are responsible for draft macroscopic thermal transport. The material presented here for thermo-electric conversion-efficiency of cubic perovskite LaAlO3, show that it has an ultralow thermal-conductivity, while the formalism to its strong phonon scattering interactions resides mostly unclear. From the bases of Ab-initio simulations, the 4-dimensional phonon-dispersion surfaces of the cubic perovskite LaAlO3, have been mapped and we found that the origins of the ionic potential an-harmonicity being responsible for the unique behaviour and properties of LaAlO3. It is investigated that these phonon scattering arise solely from the LaAlO3 unstable electronic-structure, with its orbital interactions resulting to lattice instability similar to the ferroelectric instabilities. Our results show a microscopic insight bonding electronic-structure and phonon an-harmonicity in LaAlO3, and provides some new picture the way interactions happen between phonon–electron and phonon–phonon this lead to understand the concept of ultralow thermal-conductivity. Ab-initio calculations was performed on cubic perovskite LaAlO3 to obtain the phonon density of states (DOS) from 50 K to 5000 K, we find that the anharmonic behaviour starts around temperature limits of 500 K. The computed optical spectra were obtained using both the Beth Slapter Equation BSE and compared with the perturbed method using HSE06, optical spectra show that the inter-band transition occur precisely from the O-valence bands to the La-conduction bands throughout the low energy area. The energy-loss spectrum, optical conductivity and reflectivity and the refractive index are computed from first principles by using HSE06 hybrid functional. The optical band gap of material shows about 6.21 eV, which agrees with some cited experimental measurements.


Sign in / Sign up

Export Citation Format

Share Document