Effect of Elasticity on Viscoplastic Flow

Author(s):  
Mario F. Letelier ◽  
Nicolás Díaz ◽  
Dennis Siginer ◽  
Ercio Báez

The effect of superimposing elasticity on a viscoplastic fluid (elasto-viscoplastic fluid) is investigated through a linear combination of the simplified Phan-Thien Tanner (SPTT) model of viscoelasticity and Bingham model of viscoplastic fluid. The equation of motion is solved for the case of parallel steady flow in tubes of non-circular cross-sections. The effect of elasticity on the evolution of plug and stagnant zones, and rate of flow in terms of the Weissenberg number, a material parameter in the SPTT model, and the Bingham number is investigated. We find that elasticity tends to enhance the rate of flow for given viscoplastic conditions.

Author(s):  
Giuseppe Catania ◽  
Silvio Sorrentino

In the Rayleigh-Ritz condensation method the solution of the equation of motion is approximated by a linear combination of shape-functions selected among appropriate sets. Extensive literature dealing with the choice of appropriate basis of shape functions exists, the selection depending on the particular boundary conditions of the structure considered. This paper is aimed at investigating the possibility of adopting a set of eigenfunctions evaluated from a simple stucture as a general basis for the analysis of arbitrary-shaped plates. The results are compared to those available in the literature and using standard finite element analysis.


2017 ◽  
Vol 827 ◽  
Author(s):  
Bayode E. Owolabi ◽  
David J. C. Dennis ◽  
Robert J. Poole

In this study, we experimentally investigate the turbulent drag-reduction (DR) mechanism in flow through ducts of circular, rectangular and square cross-sections using two grades of polyacrylamide in aqueous solution having different molecular weights and various semidilute concentrations. Specifically, we explore the relationship between drag reduction and fluid elasticity, purposely exploiting the mechanical degradation of polymer molecules to vary their rheological properties. We also obtain time-resolved velocity data for various DR levels using particle image velocimetry and laser Doppler velocimetry. Elasticity is quantified via relaxation times determined from uniaxial extensional flow using a capillary breakup apparatus. A plot of DR against Weissenberg number ($Wi$) is found to approximately collapse the data, with the onset of DR occurring at $Wi\approx 0.5$ and the maximum drag-reduction asymptote being approached for $Wi\gtrsim 5$. Thus quantitative predictions of DR in a range of shear flows can be made from a single measurable material property of a polymer solution, at least for this particular flexible linear polymer.


2020 ◽  
Vol 10 (15) ◽  
pp. 5245
Author(s):  
Chunfeng Wan ◽  
Huachen Jiang ◽  
Liyu Xie ◽  
Caiqian Yang ◽  
Youliang Ding ◽  
...  

Based on the classical Timoshenko beam theory, the rotary inertia caused by shear deformation is further considered and then the equation of motion of the Timoshenko beam theory is modified. The dynamic characteristics of this new model, named the modified Timoshenko beam, have been discussed, and the distortion of natural frequencies of Timoshenko beam is improved, especially at high-frequency bands. The effects of different cross-sectional types on natural frequencies of the modified Timoshenko beam are studied, and corresponding simulations have been conducted. The results demonstrate that the modified Timoshenko beam can successfully be applied to all beams of three given cross sections, i.e., rectangular, rectangular hollow, and circular cross sections, subjected to different boundary conditions. The consequence verifies the validity and necessity of the modification.


Author(s):  
Shapour Jafargholinejad ◽  
Mohammad Najafi

In this paper, the effect of inertial terms on hydroelastic stability of a pressure-driven flow of a viscoplastic fluid flowing through a channel lined with a highly compliant polymeric gel is investigated. It is assumed that the fluid obeys the Bingham constuitive equation and the polymeric gel follows a two-constant Mooney–Rivlin material, which is used for modeling a nonviscous hyperelastic polymeric coating. A base-state solution is obtained for the fluid motion and solid deformation, simultaneously. Next, some infinitesimally small two-dimensional disturbances are imposed on the base-state solution. Dropping out all nonlinear perturbation terms, the modal linear stability analysis of the channel flow is conducted. The effects of the Bingham number and material constants are then examined on the critical Reynolds number. It is found that the yield stress has a stabilizing effect while the Mooney–Rivlin parameters have destabilizing effects on the pressure-driven flow of Bingham fluids.


2008 ◽  
Vol 26 (8) ◽  
pp. 2217-2228 ◽  
Author(s):  
J. Kero ◽  
C. Szasz ◽  
A. Pellinen-Wannberg ◽  
G. Wannberg ◽  
A. Westman ◽  
...  

Abstract. In this work we give a review of the meteor head echo observations carried out with the tristatic 930 MHz EISCAT UHF radar system during four 24 h runs between 2002 and 2005 and compare these with earlier observations. A total number of 410 tristatic meteors were observed. We describe a method to determine the position of a compact radar target in the common volume monitored by the three receivers and demonstrate its applicability for meteor studies. The inferred positions of the meteor targets have been utilized to estimate their velocities, decelerations and directions of arrival as well as their radar cross sections with unprecedented accuracy. The velocity distribution of the meteoroids is bimodal with peaks at 35–40 km/s and 55–60 km/s, and ranges from 19–70 km/s. The estimated masses are between 10−9–10−5.5 kg. There are very few detections below 30 km/s. The observations are clearly biased to high-velocity meteoroids, but not so biased against slow meteoroids as has been presumed from previous tristatic measurements. Finally, we discuss how the radial deceleration observed with a monostatic radar depends on the meteoroid velocity and the angle between the trajectory and the beam. The finite beamwidth leads to underestimated meteoroid masses if radial velocity and deceleration of meteoroids approaching the radar are used as estimates of the true quantities in a momentum equation of motion.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Kanhua Su ◽  
Stephen Butt ◽  
Jianming Yang ◽  
Hongyuan Qiu

Deepwater surface BOP (surface blowout prevention, SBOP) drilling differs from conventional riser drilling system. To analyze the dynamic response of this system, the riser-conductor was considered as a beam with varied cross-sections subjected to loads throughout its length; then an equation of motion and free vibration of the riser-conductor string for SBOP was developed. The finite difference method was used to solve the equation of motion in time domain and a semianalytical approach based on the concept of section division and continuation was proposed to analyze free vibration. Case simulation results show that the method established for SBOP system natural frequency analysis is reasonable. The mode shapes of the riser-conductor are different between coupled and decoupled methods. The soil types surrounding the conductor under mudline have tiny effect on the natural frequency. Given that some papers have discussed the response of the SBOP riser, this work focused on the comparison of the dynamic responses on the wellhead and conductor with variable conditions. The dynamic lateral displacement, the bending moment, and the parameters’ sensitivity of the wellhead and the conductor were analyzed.


Author(s):  
Mario F. Letelier ◽  
Dennis A. Siginer ◽  
Felipe Godoy ◽  
César Rosas

Flow of a Herschel-Bulkley (H-B) fluid in tubes of non-circular cross-section in investigated analytically. This study complements results presented in [1] where the equation of motion was solved in tubes of arbitrary cross-section for Bingham type of fluids, and the shapes of plug zones centered on the tube axis and stagnant zones attached to the corners were predicted when the cross-section is triangular and square. In this paper we investigate the effect of the power index in the H-B model on the flow for values greater and lesser than unity, considering thus the shear-thinning and shear-thickening effects, which could not be accounted for with the Bingham model. The equation of motion is solved when the cross-section is an equilateral triangle or a square by means of the shape factor method previously introduced in [2]. Thus, shear-thickening and shear-thinning effects are accounted for and related to the tube geometry in predicting the existence and the extent of undeformed regions in the flow field.


Sign in / Sign up

Export Citation Format

Share Document