In-Line Evaluation Method of the Intrinsic Stress of Thin Films Used for Transistor Structures

Author(s):  
Hiroki Kishi ◽  
Takuya Sasaki ◽  
Nobuki Ueta ◽  
Ken Suzuki ◽  
Hideo Miura

Both thermal and intrinsic stresses that occur during thin-film processing and assembly processes dominate the final residual stress in thin film electronic devices. Since the residual stress causes the shift of electronic functions of dielectric and semiconductor materials, these shifts sometimes degrade their performance and reliability. Therefore, it is very important to measure and control the residual stress in thin-film-applied products. In this study, the changes of the electronic performance of MOS transistors by mechanical stress were measured by applying a four-point bending method. The stress sensitivity of the transconductance of NMOS transistors increased from about 1%/100-MPa to about 15%/100-MPa by decreasing the gate length of the transistors from 400 nm to 150 nm. One of the estimated important factors which dominated this increase was attributed to the interference of stress concentration fields occurred at the edges of gate-electrodes. The change of the residual stress in a transistor structure caused by deposition of thin films was analyzed by applying a finite element method (FEM). The estimated change was validated by experiment using originally developed stress sensing chips. The estimated change of the stress due to deposition of gate electrode tungsten film was about 25MPa. The measured average stress was about 20MPa and it agreed well with the estimated value. In addition, the change of the residual stress caused by the interference of the stress concentration fields between two gate-electrodes was validated by applying this stress sensing chip. The measured change of the stress caused by making fine slits by focused ion beam was about 70MPa and it agreed well with the estimated value of about 60MPa. It was confirmed, therefore, that both the thin film process-induced stress and the assembly-induced stress change the final residual stress in a transistor structure and the change can be evaluated by our stress-sensing chip quantitatively.

2001 ◽  
Vol 695 ◽  
Author(s):  
Ilan Golecki ◽  
Margaret Eagan

ABSTRACTRhodium and iridium are highly electrically conductive refractory metals, which can be used as current-carrying thin-film metallizations. Their chemical inertness further enables their application at relatively high temperatures. However, due to the high elastic modulus of such metals, a residual tensile stress of 300 to 400 MPa is measured in evaporated thin films. We present novel results evidencing complete control over both the magnitude and the sign of the residual stress in such refractory thin films. The metallic layers are deposited by means of ion-beam-enhanced physical vapor deposition and both electrical resistivity and stress are controlled. Controlling the stress in this manner has enabled achieving thicker films and films with near-zero residual stress.


2013 ◽  
Vol 802 ◽  
pp. 47-52
Author(s):  
Chuleerat Ibuki ◽  
Rachasak Sakdanuphab

In this work the effects of amorphous (glass) and crystalline (Si) substrates on the structural, morphological and adhesion properties of CoFeB thin film deposited by DC Magnetron sputtering were investigated. It was found that the structure of a substrate affects to crystal formation, surface morphology and adhesion of CoFeB thin films. The X-Ray diffraction patterns reveal that as-deposited CoFeB thin film at low sputtering power was amorphous and would become crystal when the power increased. The increase in crystalline structure of CoFeB thin film is attributed to the crystalline substrate and the increase of kinetic energy of sputtering atoms. Atomic Force Microscopy images of CoFeB thin film clearly show that the roughness, grain size, and uniformity correlate to the sputtering power and the structure of substrate. The CoFeB thin film on glass substrate shows a smooth surface and a small grain size whereas the CoFeB thin film on Si substrate shows a rough surface and a slightly increases of grain size. Sticky Tape Test on CoFeB thin film deposited on glass substrate indicates the adhesion failure with a high sputtering power. The results suggest that the crystalline structure of substrate affects to the atomic bonding and the sputtering power affects to intrinsic stress of CoFeB thin film.


2011 ◽  
Vol 335-336 ◽  
pp. 1418-1423
Author(s):  
De Yin Zhang ◽  
Wei Qian ◽  
Kun Li ◽  
Jian Sheng Xie

The Ion Beam Enhanced Deposited (IBED) lithium tantalate (LiTaO3) thin film samples with Al/LiTaO3/Pt electrode structure were prepared on the Pt/Ti/SiO2/Si(100) and SiO2/Si(100) substrate respectively. The crystallization, surface morphology, ferroelectric property, and fatigue property of the prepared samples with the different annealed processes were investigated. The XRD measured results show that the prepared samples have the polycrystal structure of LiTaO3 with the preferred orientation of <012> and <104> located at the 2θ of 23.60 and 32.70 respectively. The SEM morphology analysis reveals the prepared film annealed at 550°C is uniform, smooth and crack-free on the surface and cross section. The ferroelectric property measured results show that the remanent polarization Pr of the samples annealed at different temperature almost increase with the electric field intensity stronger. The leakage current makes the hysteresis loop of the samples subjected to a strong measured electric filed difficult to appear the same saturation hysteresis loop as the single-crystal LiTaO3. The prepared samples annealed at 550°C have a Pr value of 11.5μC/cm2 when subjected to the electrical field of 400kV/cm. The breakdown voltage of the 587nm thick thin film sample is high as to 680 kV/cm. The fatigue property measured results show only 15.17% Pr drop of the prepared films annealed at 550°C appear after 5×1010 cycles polarized by the 10MHz sinusoidal signal with the peak-to-peak amplitude of 10 Volt. The ferroelectric properties of the prepared films meet the practical application requirements of charge response measurement of the LiTaO3 infrared detector owe to the Pr of the prepared films annealed at different temperature large beyond 10μC/cm2 when the prepared films subjected to a strong electric filed larger than 400 kV/cm. The experimental results also show that the surface morphology, the ferroelectric and fatigue properties of the IBED LiTaO3 thin films are significant better than those of the Sol-Gel derived LiTaO3 thin films.


1990 ◽  
Vol 201 ◽  
Author(s):  
Kevin M. Hubbard ◽  
Nicole Bordes ◽  
Michael Nastasi ◽  
Joseph R. Tesmer

AbstractWe have investigated the fabrication of thin-film superconductors by Cu-ion implantation into initially Cu-deficient Y(BaF2)Cu thin films. The precursor films were co-evaporated on SrTiO3 substrates, and subsequently implanted to various doses with 400 keV 63Cu2+. Implantations were preformed at both LN2 temperature and at 380°C. The films were post-annealed in oxygen, and characterized as a function of dose by four-point probe analysis, X-ray diffraction, ion-beam backscattering and channeling, and scanning electron microscopy. It was found that a significant improvement in film quality could be achieved by heating the films to 380°C during the implantation. The best films became fully superconducting at 60–70 K, and exhibited good metallic R vs. T. behavior in the normal state.


2003 ◽  
Vol 795 ◽  
Author(s):  
Alex A. Volinsky ◽  
Dirk C. Meyer ◽  
Tilmann Leisegang ◽  
Peter Paufler

ABSTRACTWhile there are many stress relief mechanisms observed in thin films, excessive residual and externally applied stresses cause film fracture. In the case of tensile stress a network of through-thickness cracks forms in the film. In the case of compressive stress thin film buckling is observed in the form of blisters. Thin film delamination is an inseparable phenomenon of buckling. The buckling delamination blisters can be either circular, straight, or form periodic buckling patterns commonly known as telephone cord delamination morphology.While excessive biaxial residual stress is the key for causing thin film fracture, either in tension, or compression, it is the influence of the external stress that can control the final fracture pattern. In this paper we consider phone cord buckling delamination observed in compressed W/Si and TiWN/GaAs thin film systems, as well as spiral and sinusoidal though-thickness cracks observed in Mo/Si multilayers under 3-point high-temperature bending in tension.


2012 ◽  
Vol 520 (6) ◽  
pp. 2073-2076 ◽  
Author(s):  
Xu Song ◽  
Kong Boon Yeap ◽  
Jing Zhu ◽  
Jonathan Belnoue ◽  
Marco Sebastiani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document