Operational Data to Maintenance Optimization: Closing the Loop in Offshore Wind O&M

Author(s):  
Alexios Koltsidopoulos Papatzimos ◽  
Tariq Dawood ◽  
Philipp R. Thies

Offshore wind assets have reached multi-GW scale and additional capacity is being installed and developed. To achieve demanding cost of energy targets, awarded by competitive auctions, the operation and maintenance (O&M) of these assets has to become increasingly efficient, whilst ensuring compliance and effectiveness. Existing offshore wind farm assets generate a significant amount of inhomogeneous data related to O&M processes. These data contain rich information about the condition of the assets, which is rarely fully utilized by the operators and service providers. Academic and industrial research and development efforts have led to a suite of tools trying to apply sensor data and build machine learning models to diagnose, trend and predict component failures. This study presents a decision support framework incorporating a range of different supervised and un-supervised learning algorithms. The aim is to provide guidance for asset owners on how to select the most relevant datasets, apply and choose the different machine learning algorithms and how to integrate the data stream with daily maintenance procedures. The presented methodology is tested on a real case example of an offshore wind turbine gearbox replacement at Teesside offshore wind farm. The study uses k-nearest neighbour (kNN) and support vector machine (SVM) algorithms to detect the fault using supervisory control and data acquisition (SCADA) data and an autoregressive model for the vibration data of the condition monitoring system (CMS). The implementation of all the algorithms has resulted in an accuracy higher than 94%. The results of this paper will be of interest to offshore wind farm developers and operators to streamline and optimize their O&M planning activities for their assets and reduce the associated costs.

2018 ◽  
Vol 8 (8) ◽  
pp. 1280 ◽  
Author(s):  
Yong Kim ◽  
Youngdoo Son ◽  
Wonjoon Kim ◽  
Byungki Jin ◽  
Myung Yun

Sitting on a chair in an awkward posture or sitting for a long period of time is a risk factor for musculoskeletal disorders. A postural habit that has been formed cannot be changed easily. It is important to form a proper postural habit from childhood as the lumbar disease during childhood caused by their improper posture is most likely to recur. Thus, there is a need for a monitoring system that classifies children’s sitting postures. The purpose of this paper is to develop a system for classifying sitting postures for children using machine learning algorithms. The convolutional neural network (CNN) algorithm was used in addition to the conventional algorithms: Naïve Bayes classifier (NB), decision tree (DT), neural network (NN), multinomial logistic regression (MLR), and support vector machine (SVM). To collect data for classifying sitting postures, a sensing cushion was developed by mounting a pressure sensor mat (8 × 8) inside children’s chair seat cushion. Ten children participated, and sensor data was collected by taking a static posture for the five prescribed postures. The accuracy of CNN was found to be the highest as compared with those of the other algorithms. It is expected that the comprehensive posture monitoring system would be established through future research on enhancing the classification algorithm and providing an effective feedback system.


2020 ◽  
pp. 1420326X2093157
Author(s):  
Yu Huang ◽  
Zhi Gao ◽  
Hongguang Zhang

The accurate identification of the characteristics of pollutant sources can effectively prevent the loss of human life and property damage caused by the sudden release of harmful chemicals in emergency situations. Machine learning algorithms, artificial neural network (ANN), support vector machine (SVM), k-nearest neighbour (KNN) and naive Bayesian (NB) classification can be used to identify the location of pollutant sources with limited sensor data inputs. In this study, the identification accuracy of the four above-mentioned machine learning algorithms was investigated and compared, considering the different sensor layouts, eigenvector inputs, meteorological parameters and number of samples. The results show that the collection of pollutant concentrations over an extended period of time could improve identification accuracy. Additional sensors were required to reach the same identification accuracy after the introduction of distributed meteorological parameters. Increasing the number of trained samples by a factor of five improved the identification accuracy of KNN by 22% and that of SVM by 1.7%; however, ANN and NB classification remained basically unchanged. When identifying the release mass of the pollutant source, multiple linear, ANN and SVM regression models were adopted. Results show that ANN performs best, whereas SVM provides the least optimal performance.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1461 ◽  
Author(s):  
Juri Taborri ◽  
Eduardo Palermo ◽  
Stefano Rossi

The validity of results in race walking is often questioned due to subjective decisions in the detection of faults. This study aims to compare machine-learning algorithms fed with data gathered from inertial sensors placed on lower-limb segments to define the best-performing classifiers for the automatic detection of illegal steps. Eight race walkers were enrolled and linear accelerations and angular velocities related to pelvis, thighs, shanks, and feet were acquired by seven inertial sensors. The experimental protocol consisted of two repetitions of three laps of 250 m, one performed with regular race walking, one with loss-of-contact faults, and one with knee-bent faults. The performance of 108 classifiers was evaluated in terms of accuracy, recall, precision, F1-score, and goodness index. Generally, linear accelerations revealed themselves as more characteristic with respect to the angular velocities. Among classifiers, those based on the support vector machine (SVM) were the most accurate. In particular, the quadratic SVM fed with shank linear accelerations was the best-performing classifier, with an F1-score and a goodness index equal to 0.89 and 0.11, respectively. The results open the possibility of using a wearable device for automatic detection of faults in race walking competition.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4324
Author(s):  
Moaed A. Abd ◽  
Rudy Paul ◽  
Aparna Aravelli ◽  
Ou Bai ◽  
Leonel Lagos ◽  
...  

Multifunctional flexible tactile sensors could be useful to improve the control of prosthetic hands. To that end, highly stretchable liquid metal tactile sensors (LMS) were designed, manufactured via photolithography, and incorporated into the fingertips of a prosthetic hand. Three novel contributions were made with the LMS. First, individual fingertips were used to distinguish between different speeds of sliding contact with different surfaces. Second, differences in surface textures were reliably detected during sliding contact. Third, the capacity for hierarchical tactile sensor integration was demonstrated by using four LMS signals simultaneously to distinguish between ten complex multi-textured surfaces. Four different machine learning algorithms were compared for their successful classification capabilities: K-nearest neighbor (KNN), support vector machine (SVM), random forest (RF), and neural network (NN). The time-frequency features of the LMSs were extracted to train and test the machine learning algorithms. The NN generally performed the best at the speed and texture detection with a single finger and had a 99.2 ± 0.8% accuracy to distinguish between ten different multi-textured surfaces using four LMSs from four fingers simultaneously. The capability for hierarchical multi-finger tactile sensation integration could be useful to provide a higher level of intelligence for artificial hands.


Author(s):  
Pratyush Kaware

In this paper a cost-effective sensor has been implemented to read finger bend signals, by attaching the sensor to a finger, so as to classify them based on the degree of bent as well as the joint about which the finger was being bent. This was done by testing with various machine learning algorithms to get the most accurate and consistent classifier. Finally, we found that Support Vector Machine was the best algorithm suited to classify our data, using we were able predict live state of a finger, i.e., the degree of bent and the joints involved. The live voltage values from the sensor were transmitted using a NodeMCU micro-controller which were converted to digital and uploaded on a database for analysis.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 684 ◽  
Author(s):  
V V. Ramalingam ◽  
Ayantan Dandapath ◽  
M Karthik Raja

Heart related diseases or Cardiovascular Diseases (CVDs) are the main reason for a huge number of death in the world over the last few decades and has emerged as the most life-threatening disease, not only in India but in the whole world. So, there is a need of reliable, accurate and feasible system to diagnose such diseases in time for proper treatment. Machine Learning algorithms and techniques have been applied to various medical datasets to automate the analysis of large and complex data. Many researchers, in recent times, have been using several machine learning techniques to help the health care industry and the professionals in the diagnosis of heart related diseases. This paper presents a survey of various models based on such algorithms and techniques andanalyze their performance. Models based on supervised learning algorithms such as Support Vector Machines (SVM), K-Nearest Neighbour (KNN), NaïveBayes, Decision Trees (DT), Random Forest (RF) and ensemble models are found very popular among the researchers.


Author(s):  
Bryan Nelson ◽  
Yann Quéméner

This study evaluated, by time-domain simulations, the fatigue lives of several jacket support structures for 4 MW wind turbines distributed throughout an offshore wind farm off Taiwan’s west coast. An in-house RANS-based wind farm analysis tool, WiFa3D, has been developed to determine the effects of the wind turbine wake behaviour on the flow fields through wind farm clusters. To reduce computational cost, WiFa3D employs actuator disk models to simulate the body forces imposed on the flow field by the target wind turbines, where the actuator disk is defined by the swept region of the rotor in space, and a body force distribution representing the aerodynamic characteristics of the rotor is assigned within this virtual disk. Simulations were performed for a range of environmental conditions, which were then combined with preliminary site survey metocean data to produce a long-term statistical environment. The short-term environmental loads on the wind turbine rotors were calculated by an unsteady blade element momentum (BEM) model of the target 4 MW wind turbines. The fatigue assessment of the jacket support structure was then conducted by applying the Rainflow Counting scheme on the hot spot stresses variations, as read-out from Finite Element results, and by employing appropriate SN curves. The fatigue lives of several wind turbine support structures taken at various locations in the wind farm showed significant variations with the preliminary design condition that assumed a single wind turbine without wake disturbance from other units.


Sign in / Sign up

Export Citation Format

Share Document