SnAgCu Micro-Ball Grid Array (BGA) Solder Joint Evaluation Using a Torsion Mechanical Fatigue Test Method

Author(s):  
Claire Ryan ◽  
Bryan A. Rodgers ◽  
Jeff M. Punch

Due to the hazard which lead poses to health and the environment the EU is banning its use in electrical and electronic equipment from July 2006. This ban along with the market drive to more environmentally friendly products means that tin-lead solders must be replaced with lead-free alternatives. This paper presents the results of an experimental investigation of the mechanical fatigue properties of tin-silver-copper (SnAgCu) solder joints with a baseline of tin-lead (SnPb). The test vehicle comprised of an 8-layer FR4 printed circuit board (PCB) mounted with four micro-ball grid array (BGA) components — each with a total of 100 solder balls in a 10×10 array. The solder joints were formed using surface mount reflow processes optimised for both solder types. A torsion mechanical fatigue test was employed to evaluate the solder joints — the principle of which was to stress the solder joints repetitively in order to determine the number of cycles to failure. The BGA components were daisy-chained — the resistance across each daisy-chain was monitored continuously during the cyclic defection of the test board. A profile of the increase in resistance with cycle number was established and the number of cycles to failure determined. The failure mechanism induced by the cycling was examined using cross-section and scanning electron microscopy (SEM) techniques. The results for SnAgCu joints show a superior performance during torsion mechanical fatigue testing than SnPb joints; giving a greater number of cycles to failure. The results from the tests presented in this paper show that the torsion test method provides a viable alternative to ATC as a qualification method for solder joints, while also providing substantial time savings — taking weeks rather than months to complete.

2021 ◽  
Author(s):  
Peter Gill ◽  
Paul Onwuarolu ◽  
Russell Smith ◽  
Ben Coult ◽  
Mark Kirkham ◽  
...  

Abstract A significant amount of fatigue testing has taken place over the years to generate relationships between applied stress or strain range and cycles to failure. This has mainly been conducted on uniaxial test specimens in an air environment. More recently, fatigue testing has been conducted in a PWR environment as it is now well known that this has a deleterious impact on life. The test method presented in this paper considers bi-axial loading on a specimen that is compatible with PWR fatigue testing rigs. In order to achieve this, a specimen was designed to convert a uniaxial load into a biaxial load with no internal mechanism. Finite Element Analysis (FEA) was conducted to develop and refine the design, which accounted for frictional contact and bolt up stresses. Initial testing was conducted on a 304L stainless steel specimen in a room temperature air environment. Digital Image Correlation (DIC) was used to validate the FEA and there was excellent agreement between predicted and observed strains. Once the strains were validated, a fatigue test was conducted to confirm that cracking was in the expected location, and that the number of cycles to failure was reasonable. Direct Current Potential Drop (DCPD) was used to indicate when a fatigue crack initiated, which was confirmed by visual inspection. The results showed that cracking occurred in the location of highest accumulated plastic strain and Von Mises Stress, and the number of cycles to failure was slightly lower than predicted but still within scatter.


2020 ◽  
Vol 10 (1) ◽  
pp. 394-400 ◽  
Author(s):  
I. M. W. Ekaputra ◽  
Rando Tungga Dewa ◽  
Gunawan Dwi Haryadi ◽  
Seon Jin Kim

AbstractThis paper presents the reliability estimation of fatigue strength of the material used for crank throw components. The material used for crank throw components is forged S34MnV steel and subsequently heat-treated by normalising and tempering. High cycle fatigue testing under fully reversed cycling (R = −1) was performed to determine the fatigue limit of the material. The staircase test method is used to obtain accurate values of the mean fatigue limit stress until a number of cycles up to 1E7 cycles. Subsequently, the fatigue test results depend strongly on the stress step and are evaluated by the Dixon-Mood formula. The values of mean fatigue strength and standard deviation predicted by the staircase method are 282 MPa and 10.6MPa, respectively. Finally, the reliability of the design fatigue strength in some selected probability of failure is calculated. Results indicate that the fatigue strength determined from accelerated staircase test is consistent with conventional fatigue testing. Furthermore, the proposed method can be applied for the determination of fatigue strength and standard deviation for design optimisation of S34MnV steel.


2014 ◽  
Vol 936 ◽  
pp. 628-632 ◽  
Author(s):  
Guo Zheng Yuan ◽  
Xia Chen ◽  
Xue Feng Shu

The failure of plastic ball grid array under intense dynamic loading was studied in the project. This paper presents the drop test reliability results of SnPb flip-chip on a standard JEDEC drop reliability test board. The failure mode and mechanism of planar array package in the drop test was comprehensively analyzed. High acceleration dropping test method was used to research the reliability of BGA (ball grid array) packages during the free-drop impact process. The model RS-DP-03A drop device was used to simulate the falling behavior of BGA chip packages under the real conditions, The drop condition meets the JEDEC22-B111 standards (pulse peak 1500g, pulse duration 0.5 ms) when dropping from the 650mm height . In the testing, according to the real-time changes of dynamic voltage, the relationship between drop times and different phases of package failure was analyzed. With the dye-penetrated method and optical microscopy, it was easy to observe the internal crack and failure locations. The growth mechanism of the cracks in solder joints under the condition of drop-free was analyzed and discussed.


1966 ◽  
Vol 39 (2) ◽  
pp. 348-364 ◽  
Author(s):  
G. J. Lake ◽  
P. B. Lindley

Abstract Investigations of the dynamic cut growth behavior of vulcanized rubbers indicate that there is a minimum tearing energy at which mechanical rupture of chains occurs. The limiting value is characteristic of each vulcanizate, but is in the region of 0.05 kg/cm. The mechanical fatigue limit, below which the number of cycles to failure increases rapidly, is accurately predicted from this critical tearing energy. Characteristics of cut growth at low tearing energies, and effects of polymer, vulcanizing system, oxygen, and fillers on the critical tearing energy and fatigue limit are discussed.


2018 ◽  
Vol 140 (3) ◽  
Author(s):  
Lindsay L. Loundagin ◽  
Tannin A. Schmidt ◽  
W. Brent Edwards

Stress fractures are a common overuse injury among runners associated with the mechanical fatigue of bone. Several in vivo biomechanical studies have investigated specific characteristics of the vertical ground reaction force (vGRF) in heel-toe running and have observed an association between increased loading rate during impact and individuals with a history of stress fracture. The purpose of this study was to examine the fatigue behavior of cortical bone using vGRF-like loading profiles, including those that had been decomposed into their respective impact and active phase components. Thirty-eight cylindrical cortical bone samples were extracted from bovine tibiae and femora. Hydrated samples were fatigue tested at room temperature in zero compression under load control using either a raw (n = 10), active (n = 10), low impact (n = 10), or high impact (n = 8) vGRF profile. The number of cycles to failure was quantified and the test was terminated if the sample survived 105 cycles. Fatigue life was significantly greater for both impact groups compared to the active (p < 0.001) and raw (p < 0.001) groups, with all low impact samples and 6 of 8 high impact samples surviving 105 cycles. The mean (± SD) number of cycles to failure for the active and raw groups was 12,133±11,704 and 16,552±29,612, respectively. The results suggest that loading rates associated with the impact phase of a typical vGRF in running have little influence on the mechanical fatigue behavior of bone relative to loading magnitude, warranting further investigation of the mechanism by which increased loading rates are associated with stress fracture.


2016 ◽  
Vol 721 ◽  
pp. 467-472 ◽  
Author(s):  
Lembit Kommel

The purpose of this study is to analyze the effect of electric upsetting on the microstructure defects eliminating and mechanical properties evolution of the Ni-Fe-Cr-based polycrystalline superalloy EP718E. The microstructure was examined by scanning electron microscope and energy dispersive spectrometry techniques. The material mechanical properties were characterized by nanoindentation, by tension testing of micro samples and high cycle fatigue testing at room temperature. The results show, that the microstructure defects on confluence of grain boundaries (depending on the processing stages) were step-by-step eliminated. The tension stress was lowered but elongation was increase. As a result of such changes in microstructure and mechanical properties of alloy the fatigue strength (δ-1) was increased from δ-1 = 300 MPa to δ-1 = 540 MPa and the number of cycles to failure was increased from N1 = 2·107 up to N4 = 4 x (2·107), respectively.


The characteristics of the deformation and fracture of metals under repeated cycles of stress, generally described as “fatigue phenomena,” have received very considerable attention, both experimental and theoretical. Usually, consideration has been devoted exclusively to conditions in which the metal subjected to fatigue has its free surface exposed to the ordinary atmosphere. In many cases in actual practice, however, metals are subjected to fatigue action while surrounded by a fluid—either gaseous or liquid—which is of a corrosive nature and the endurance or “life” of the metal is controlled by the simultaneous conjoint action of the applied stresses and the corrosive agent. To such conditions the term “corrosion-fatigue” has been applied. Attention was first directed to this aspect of fatigue phenomena in 1917 by Haigh, who demonstrated experimentally that, in general, fatigue stresses and corrosive influences may be mutually accelerative, producing more destructive effects than either influence when acting separately, or when the stressing is applied subsequent to the corrosion stage. The subject then appeared to escape further attention for a period of about nine years, after which the results of the first of a series of important researches were published; in this connection reference should be made to the work of Lehmann, McAdam, Speller, McCorkle and Mumma, Binnie, Fuller, Haigh and Jones, etc. From the researches of these investigators, and particularly from those of McAdam, a very large amount of data is now available regarding the corrosion-fatigue resistance of a wide range of metals and alloys, and the separate effects of such variables as frequency of stress cycle, number of cycles, corrosion time, applied range of stress, etc., also of corrosion inhibitors and accelerators. No attention has apparently been given hitherto to the changes in microstructure occurring during a corrosion-fatigue test and, as a result, no information existed on such fundamental points as (i) the general course of a corrosion-fatigue crack; whether intercrystalline or transcrystalline; (ii) the actual point of initiation of the crack; whether it is situated at a crystal boundary, or on the site of previous slip bands, or at local corrosion pits bearing no distinct relation to these special positions. In planning a research with these general objects in view it was decided to make experiments, under corrosion-fatigue conditions, on ( a ) a single crystal, ( b ) a specimen consisting of two large crystals with the separating boundary, and ( c ) a specimen consisting of the usual finely-divided aggregate of crystals. By using single crystals and large crystal specimens and employing X-ray, microscopical and mechanical methods, it was hoped to correlate corrosion-fatigue phenomena with the fine structure. The present report describes the observations made on what is believed to be the first corrosion-fatigue test on a single crystal.


2017 ◽  
Vol 44 (4) ◽  
pp. 1-8 ◽  
Author(s):  
T. Kroth ◽  
D. Lellinger ◽  
I. Alig ◽  
M. Wallmichrath

Cyclic fatigue testing and elastomer characterisation were combined to study changes in material properties and network structure of elastomers during thermal ageing. Natural rubber containing a typical additive package with carbon black was studied as a model material. The samples were aged at different temperatures in air or under a nitrogen atmosphere. The fatigue life in number of cycles to failure (S-N curves) was determined from force- and displacement-controlled fatigue tests on tensile bar specimens after different thermal ageing times. Changes in mechanical properties and crosslink density were studied by tensile tests, dynamic mechanical analysis, stress relaxation experiments, compression set measurements, swelling measurements and solid-state NMR. Changes in network density during thermal ageing are related to the interplay between the formation of new crosslinks and chain scission. The average molecular mass of the network chains was found to be a suitable parameter for comparing different characterisation methods. An initial decrease in the molecular mass between two crosslinking points due to post-curing is followed by an increase due to chain scission. A similar trend was found for fatigue life in number of cycles to failure (N) in force-controlled fatigue tests: an increase in N for short ageing times is followed by a decrease after longer ageing times.


Sign in / Sign up

Export Citation Format

Share Document