Enhanced Processability and Thermal Fatigue Reliability With Low Melting Point SnBi Solder Alloy LMPA-Q

2021 ◽  
Author(s):  
Bart Vandevelde ◽  
Chinmay Nawghane ◽  
Riet Labie ◽  
Ralph Lauwaert ◽  
Daniel Werkhoven

Abstract SnBi based solder alloys become an interesting alternative for standard SnAgCu as they can be used to solder components at much lower temperature. The typically 50°C lower solder reflow temperature is less damaging for PCB and components, and also prevents hot tear and head-in-pillow failures for large fine pitch BGA components. A reasonable concern for these low-melting temperature solders is the thermal cycling reliability performance, in particular for harsh conditions such as automotive products. In this work, thermal cycling testing and failure analysis have been performed on 9 × 9 mm size QFN components and large chip components (2010 and 2512) which are typically sensitive to thermal fatigue. The results are benchmarked to standard SAC alloy. Also the process advantages from the low temperature solder alloys are depicted in this paper. Finally, the effect of Pb contamination on this SnBi based solder is investigated.

2005 ◽  
Vol 2 (3) ◽  
pp. 171-179 ◽  
Author(s):  
Tong Hong Wang ◽  
Yi-Shao Lai ◽  
Chang-Chi Lee

In this paper, the sequential thermal-mechanical coupling analysis, which solves in turn the transient temperature field and subsequent thermomechanical deformations, was carried out to investigate board-level fatigue reliability of a thin profile and fine pitch ball grid array (TFBGA) chip-scale package under accelerated power cycling test conditions. Experiments for steady-state and transient thermal dissipations were conducted to verify the thermal analysis. Comparing between numerical results for power cycling and thermal cycling, it is noticed that for the tests with similar low and high temperature extremes, power cycling results in a much longer fatigue life than thermal cycling, which indicates that thermal cycling is a more conservative criterion than power cycling is in evaluating the fatigue resistance of the electronic packages.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 295
Author(s):  
Pao-Hsiung Wang ◽  
Yu-Wei Huang ◽  
Kuo-Ning Chiang

The development of fan-out packaging technology for fine-pitch and high-pin-count applications is a hot topic in semiconductor research. To reduce the package footprint and improve system performance, many applications have adopted packaging-on-packaging (PoP) architecture. Given its inherent characteristics, glass is a good material for high-speed transmission applications. Therefore, this study proposes a fan-out wafer-level packaging (FO-WLP) with glass substrate-type PoP. The reliability life of the proposed FO-WLP was evaluated under thermal cycling conditions through finite element simulations and empirical calculations. Considering the simulation processing time and consistency with the experimentally obtained mean time to failure (MTTF) of the packaging, both two- and three-dimensional finite element models were developed with appropriate mechanical theories, and were verified to have similar MTTFs. Next, the FO-WLP structure was optimized by simulating various design parameters. The coefficient of thermal expansion of the glass substrate exerted the strongest effect on the reliability life under thermal cycling loading. In addition, the upper and lower pad thicknesses and the buffer layer thickness significantly affected the reliability life of both the FO-WLP and the FO-WLP-type PoP.


Author(s):  
X. Long ◽  
I. Dutta ◽  
R. Guduru ◽  
R. Prasanna ◽  
M. Pacheco

A thermo-mechanical loading system, which can superimpose a temperature and location dependent strain on solder joints, is proposed in order to conduct highly accelerated thermal-mechanical cycling (HATC) tests to assess thermal fatigue reliability of Ball Grid Array (BGA) solder joints in microelectronics packages. The application of this temperature and position dependent strain produces generally similar loading modes (shear and tension) encountered by BGA solder joints during service, but substantially enhances the inelastic strain accumulated during thermal cycling over the same temperature range as conventional ATC (accelerated thermal cycling) tests, thereby leading to a substantial acceleration of low-cycle fatigue damage. Finite element analysis was conducted to aid the design of experimental apparatus and to predict the fatigue life of solder joints in HATC testing. Detailed analysis of the loading locations required to produce failure at the appropriate joint (next to the die-edge ball) under the appropriate tension/shear stress partition are presented. The simulations showed that the proposed HATC test constitutes a valid methodology for further accelerating conventional ATC tests. An experimental apparatus, capable of applying the requisite loads to a BGA package was constructed, and experiments were conducted under both HATC and ATC conditions. It is shown that HATC proffers much reduced cycling times compared to ATC.


2010 ◽  
Vol 2010 (1) ◽  
pp. 000298-000305
Author(s):  
Tae-Kyu Lee ◽  
Weidong Xie ◽  
Thomas R. Bieler ◽  
Kuo-Chuan Liu ◽  
Jie Xue

The interaction between isothermal aging and long-term reliability of fine pitch ball grid array (BGA) packages with Sn-3.0Ag-0.5Cu (wt%) solder ball interconnects are investigated. In this study, 0.4mm fine pitch packages with 0.3mm diameter Sn-Ag-Cu solder balls are used. Two different die sizes and two different package substrate surface finishes are selected to compare the internal strain impact and alloy effect, especially the Ni effect during thermal cycling. To see the thermal impact on the thermal performance and long-term reliability, the samples are isothermally aged and thermal cycled from 0 to 100°C with a 10minute dwell time. Based on weibull plots for each aging condition, the lifetime of the package reduced approximately 44% with 150°C aging precondition. The microstructure evolution is observed during thermal aging and thermal cycling with different phase microstructure transformations between electrolytic Ni/Au and OSP surface finishes, focusing on the microstructure evolution near the package side interface. Different mechanisms after aging at various conditions are observed, and their impacts on the fatigue life of solder joints are discussed.


Sign in / Sign up

Export Citation Format

Share Document