Measurement of 2D Positioning “Error Map” of a SCARA-Type Robot Over the Entire Workspace by Using a Laser Interferometer and a PSD Sensor

Author(s):  
Masatoshi Tomita ◽  
Soichi Ibaraki

Abstract Compared to positioning repeatability, the “absolute” positioning accuracy of an industrial robot is often significantly worse. In this paper, we propose a method to measure the 2D absolute positioning error of a SCARA robot. Over the given laser line, the linear positioning deviation and the straightness deviation are measured by using a laser interferometer and a position sensitive detector (PSD), respectively. Then, multiple laser lines are set up by using an optical square such that the parallelism or the squareness to the original line can be ensured. By similarly measuring linear positioning and straightness deviations over these laser lines, the robot’s 2D positioning error can be visually represented as a two-dimensional error map.

2020 ◽  
Vol 17 (2) ◽  
pp. 172988142092164
Author(s):  
Junde Qi ◽  
Bing Chen ◽  
Dinghua Zhang

Industrial robots are getting widely applied due to their low use-cost and high flexibility. However, the low absolute positioning accuracy limits their expansion in the area of high-precision manufacturing. Aiming to improve the positioning accuracy, a compensation method for the positioning error is put forward in terms of the optimization of the experimental measurement space and accurate modelling of the positioning error. Firstly, the influence of robot kinematic performance on the measurement accuracy is analysed, and a quantitative index describing the performance is adopted. On this basis and combined with the joints motion characteristics, the optimized measurement space in joint space as well as Cartesian space is obtained respectively, which can provide accurate measurement data to the error model. Then the overall model of the positioning error is constructed based on modified Denavit–Hartenberg method, in which the geometric errors and compliance errors are considered comprehensively, and an error decoupling method between them is carried out based on the error-feature analyses. Experiments on the KUKA KR210 robot are carried out finally. The mean absolute positioning accuracy of the robot increases from 1.179 mm to 0.093 mm, which verifies the effectiveness of the compensation methodology in this article.


2014 ◽  
Vol 10 (1) ◽  
pp. 1-15
Author(s):  
Z. Láng

The possible effect of shaker harvest on root damage of 10-year-old cherry trees was studied on a simple tree structure model. The model was composed of elastic trunk and rigid main roots, the ends of which were connected to the surrounding soil via springs and dumping elements. Equations were set up to be able to calculate the relation between shaking height on the trunk and strain in the roots. To get the data for root break and their elongation at different shaking heights on the trunk, laboratory and field experiments were carried out on cherry trees and on their roots. Having evaluated the measured and calculated data it could be concluded that root damage is to be expected even at 3.6% strain and the risk of it increases with increased trunk amplitudes, i.e.with the decrease of shaking heightat smaller stem diameters (i.e. in younger plantation), andif the unbalanced mass of the shaker machine is too large for the given tree size.


Author(s):  
Kiseki D Nakamura ◽  
Kentaro Miuchi ◽  
Shingo Kazama ◽  
Yutaro Shoji ◽  
Masahiro Ibe ◽  
...  

Abstract Migdal effect is attracting interests because of the potential to enhance the sensitivities of direct dark matter searches to the low mass region. In spite of its great importance, the Migdal effect has not been experimentally observed yet. A realistic experimental approach towards the first observation of the Migdal effect in the neutron scattering was studied with Monte Carlo simulations. In this study, potential background rate was studied together with the event rate of the Migdal effect by a neutron source. It was found that a table-top sized ~ (30cm)3 position-sensitive gaseous detector filled with argon or xenon target gas can detect characteristic signatures of the Migdal effect with sufficient rates (O(102 ~ 103) events/day). A simulation result of a simple experimental set-up showed two significant background sources, namely the intrinsic neutrons and the neutron induced gamma-rays. It is found that the intrinsic neutron background rate for the argon gas is acceptable level and some future study for the reduction of the gamma-rays from the laboratory would make the observation of the Migdal effect possible. The background for the xenon gas, on the other hand, is found to be much more serious than for the argon gas. Future works on the isotope separation as well as the reduction of the gamma-rays from the detector and laboratory will be needed before the Migdal effect observation for xenon gas case.


2021 ◽  
Vol 11 (3) ◽  
pp. 1287
Author(s):  
Tianyan Chen ◽  
Jinsong Lin ◽  
Deyu Wu ◽  
Haibin Wu

Based on the current situation of high precision and comparatively low APA (absolute positioning accuracy) in industrial robots, a calibration method to enhance the APA of industrial robots is proposed. In view of the "hidden" characteristics of the RBCS (robot base coordinate system) and the FCS (flange coordinate system) in the measurement process, a comparatively general measurement and calibration method of the RBCS and the FCS is proposed, and the source of the robot terminal position error is classified into three aspects: positioning error of industrial RBCS, kinematics parameter error of manipulator, and positioning error of industrial robot end FCS. The robot position error model is established, and the relation equation of the robot end position error and the industrial robot model parameter error is deduced. By solving the equation, the parameter error identification and the supplementary results are obtained, and the method of compensating the error by using the robot joint angle is realized. The Leica laser tracker is used to verify the calibration method on ABB IRB120 industrial robot. The experimental results show that the calibration method can effectively enhance the APA of the robot.


Author(s):  
Ana Guerberof Arenas ◽  
Joss Moorkens ◽  
Sharon O’Brien

AbstractThis paper presents results of the effect of different translation modalities on users when working with the Microsoft Word user interface. An experimental study was set up with 84 Japanese, German, Spanish, and English native speakers working with Microsoft Word in three modalities: the published translated version, a machine translated (MT) version (with unedited MT strings incorporated into the MS Word interface) and the published English version. An eye-tracker measured the cognitive load and usability according to the ISO/TR 16982 guidelines: i.e., effectiveness, efficiency, and satisfaction followed by retrospective think-aloud protocol. The results show that the users’ effectiveness (number of tasks completed) does not significantly differ due to the translation modality. However, their efficiency (time for task completion) and self-reported satisfaction are significantly higher when working with the released product as opposed to the unedited MT version, especially when participants are less experienced. The eye-tracking results show that users experience a higher cognitive load when working with MT and with the human-translated versions as opposed to the English original. The results suggest that language and translation modality play a significant role in the usability of software products whether users complete the given tasks or not and even if they are unaware that MT was used to translate the interface.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2653
Author(s):  
Tova Jarnerud ◽  
Andrey V. Karasev ◽  
Pär G. Jönsson

In this study, CaO-containing wastes from pulp and paper industries such as fly ash (FA) and calcined lime mud (LM) were utilized to neutralize and purify acidic wastewaters from the pickling processes in steel mills. The investigations were conducted by laboratory scale trials using four different batches of wastewaters and additions of two types of CaO-containing waste materials. Primary lime (PL), which is usually used for the neutralization, was also tested in the same experimental set up in the sake of comparison. The results show that these secondary lime sources can effectively increase the pH of the acidic wastewaters as good as the commonly used primary lime. Therefore, these secondary lime sources could be potential candidates for application in neutralization processes of industrial acidic wastewater treatment. Moreover, concentrations of metals (such as Cr, Fe, Ni, Mo and Zn) can decrease dramatically after neutralization by using secondary lime. The LM has a purification effect from the given metals, similar to the PL. Application of fly ash and calcined lime mud as neutralizing agents can reduce the amount of waste from pulp and paper mills sent to landfill and decrease the need for nature lime materials in the steel industry.


2021 ◽  
Author(s):  
Daiki Kato ◽  
Kenya Yoshitugu ◽  
Naoki Maeda ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama ◽  
...  

Abstract Most industrial robots are taught using the teaching playback method; therefore, they are unsuitable for use in variable production systems. Although offline teaching methods have been developed, they have not been practiced because of the low accuracy of the position and posture of the end-effector. Therefore, many studies have attempted to calibrate the position and posture but have not reached a practical level, as such methods consider the joint angle when the robot is stationary rather than the features during robot motion. Currently, it is easy to obtain servo information under numerical control operations owing to the Internet of Things technologies. In this study, we propose a method for obtaining servo information during robot motion and converting it into images to find features using a convolutional neural network (CNN). Herein, a large industrial robot was used. The three-dimensional coordinates of the end-effector were obtained using a laser tracker. The positioning error of the robot was accurately learned by the CNN. We extracted the features of the points where the positioning error was extremely large. By extracting the features of the X-axis positioning error using the CNN, the joint 1 current is a feature. This indicates that the vibration current in joint 1 is a factor in the X-axis positioning error.


Author(s):  
Xueping Dou ◽  
Qiang Meng

This study proposes a solution to the feeder bus timetabling problem, in which the terminal departure times and vehicle sizes are simultaneously determined based on the given transfer passengers and their arrival times at a bus terminal. The problem is formulated as a mixed integer non-linear programming (MINLP) model with the objective of minimizing the transfer waiting time of served passengers, the transfer failure cost of non-served passengers, and the operating costs of bus companies. In addition to train passengers who plan to transfer to buses, local passengers who intend to board buses are considered and treated as passengers from virtual trains in the proposed model. Passenger attitudes and behaviors toward the waiting queue caused by bus capacity constraints in peak hour demand conditions are explicitly embedded in the MINLP model. A hybrid artificial bee colony (ABC) algorithm is developed to solve the MINLP model. Various experiments are set up to account for the performance of the proposed model and solution algorithm.


2016 ◽  
Vol 12 (S324) ◽  
pp. 287-290
Author(s):  
Barbara De Lotto ◽  
Stefano Ansoldi ◽  
Angelo Antonelli ◽  
Alessio Berti ◽  
Alessandro Carosi ◽  
...  

AbstractThe year 2015 witnessed the first direct observations of a transient gravitational-wave (GW) signal from binary black hole mergers by the Advanced Laser Interferometer Gravitational-wave Observatory (aLIGO) Collaboration with the Virgo Collaboration. The MAGIC two 17m diameter Cherenkov telescopes system joined since 2014 the vast collaboration of electromagnetic facilities for follow-up of gravitational wave alerts. During the 2015 LIGO-Virgo science run we set up the procedure for GW alerts follow-up and took data following the last GW alert. MAGIC results on the data analysis and prospects for the forthcoming run are presented.


Sign in / Sign up

Export Citation Format

Share Document