Track Substructure Design Methodology and Data

Author(s):  
Theodore R. Sussmann ◽  
James P. Hyslip

Track substructure design is an often overlooked step in the design of railroad track. The lack of consideration for the substructure when designing track results in greater maintenance demands due to inadequate track substructure performance. Railway track is a stable structure with a progressive failure process that allows track engineers to manage the degradation of the track through maintenance. However, increasing demands for track availability from high traffic volumes require that track maintenance be minimized while ensuring safety. Additionally, developing high speed rail and intercity passenger rail on existing corridors necessitates higher levels of substructure performance due to tighter track roughness tolerances. Reduction in maintenance needs can be achieved by ensuring that new construction and rehabilitation projects be designed to provide a stable track structure throughout the design life. Lack of readily available data for substructure materials is a drawback to the use of track design methods. This paper provides a summary of several available substructure track design methods along with the required data for design. The track design data is related to track measurements that could be used to determine much of the information necessary for design of track rehabilitation. Track load-deflection data could be used to develop much of the needed design data while ground penetrating radar could support delineation of similar track segments. Benefits of track structure design include knowledge of expected life, reduced maintenance, material properties for quality control, and development of material properties that could permit application of performance based contract specifications.

2021 ◽  
Vol 11 (8) ◽  
pp. 3520
Author(s):  
Xiaopei Cai ◽  
Qian Zhang ◽  
Yanrong Zhang ◽  
Qihao Wang ◽  
Bicheng Luo ◽  
...  

In order to find out the influence of subgrade frost heave on the deformation of track structure and track irregularity of high-speed railways, a nonlinear damage finite element model for China Railway Track System III (CRTSIII) slab track subgrade was established based on the constitutive theory of concrete plastic damage. The analysis of track structure deformation under different subgrade frost heave conditions was focused on, and amplitude the limit of subgrade frost heave was put forward according to the characteristics of interlayer seams. This work is expected to provide guidance for design and construction. Subgrade frost heave was found to cause cosine-type irregularities of rails and the interlayer seams in the track structure, and the displacement in lower foundation mapping to rail surfaces increased. When frost heave occured in the middle part of the track slab, it caused the greatest amount of track irregularity, resulting in a longer and higher seam. Along with the increase in frost heave amplitude, the length of the seam increased linearly whilst its height increased nonlinearly. When the frost heave amplitude reached 35 mm, cracks appeared along the transverse direction of the upper concrete surface on the base plate due to plastic damage; consequently, the base plate started to bend, which reduced interlayer seams. Based on the critical value of track structures’ interlayer seams under different frost heave conditions, four control limits of subgrade frost heave at different levels of frost heave amplitude/wavelength were obtained.


2011 ◽  
Vol 97-98 ◽  
pp. 3-9
Author(s):  
Yang Wang ◽  
Quan Mei Gong ◽  
Mei Fang Li

The slab track is a new sort of track structure, which has been widely used in high-speed rail and special line for passenger. However, the ballastless track structure design theory is still not perfect and can not meet the requirements of current high-speed rail and passenger line ballastless track. In this paper, composite beam method is used to calculate the deflection of the track plate and in this way the vertical supporting stress distribution of the track plate can be gotten which set a basis for the follow-up study of the dynamic stress distribution in the subgrade. Slab track plate’s bearing stress under moving load is analyzed through Matlab program. By calculation and analysis, it is found that the deflection of track plate and the rail in the double-point-supported finite beam model refers to the rate of spring coefficient of the fastener and the mortar.The supporting stress of the rail plate is inversely proportional to the supporting stress of the rail. The two boundary conditions of that model ,namely, setting the end of the model in the seams of the track plate or not , have little effect on the results. We can use the supporting stress of the track plates on state 1to get the distribution of the supporting stress in the track plate when bogies pass. Also, when the dynamic load magnification factor is 1.2, the track plate supporting stress of CRST I & CRST II-plate non-ballasted structure is around 40kPa.


2014 ◽  
Vol 644-650 ◽  
pp. 535-538
Author(s):  
Wei Ping Wang ◽  
Dun Jin Cai ◽  
Xu Feng Ma ◽  
Ping Wang

In recent decades, with the acceleration of population flowing in China, large and medium-sized cities to speed up the construction of urban rail. Relatively high speed railway, the requirement of the urban rail is relatively low, so it can be designed on the basis of high speed railway track structure for urban rail transport, this gives the designer the design of large space;Each city urban rail structure more or less differences. Especially fastening system is various, even in the same line also exist different fastening systems.Because Chinese fastening system in the subway is various, not a fixed is widely used fastening system;This paper, the DT series fastening in subway system has carried on the simple summary. Make a reference for fastening researchers.


2021 ◽  
Vol 104 (4) ◽  
pp. 003685042110363
Author(s):  
Zhiping Zeng ◽  
Guanghui Hu ◽  
Xiangdong Huang ◽  
Weidong Wang ◽  
Ayoub Abdullah Senan Qahtan ◽  
...  

Low-Vibration Tracks (LVTs) are widely used in subway tunnels for their excellent performance, but the application in heavy-duty railways still requires a lot of feasibility studies. In this study, the statics performance of LVT under different axle loads, load direction, and load position is explored using the finite element software Abaqus. The Timoshenk beam element and nonlinear spring element 3D solid element are used to represent rails, fasteners, and the other track structure respectively. The paper established the finite element model of LVT to study the mechanical characteristics of low vibration track structure under varying loading condition. The applied loads are determined according to the Heavy-Haul Railway Track Structure Design Code. The results shows: (1) The deformation and stress of the LVT structure show a linear relationship with the increase of the axle load. (2) Slab end loading and lateral load are more unfavorable to the stress and deformation of the track structure. When slab end is loaded with vertical load, the vertical load is distributed on four supporting blocks along the longitudinal direction with a ratio of 1:4:4:1, and the lateral direction is mainly borne by two adjacent fastener nodes with the total load proportion of 47% and 47% respectively. (3) The LVT structure can guarantee the safety of static performance under 30 t axle load and the maximum axle load should not exceed 36 t. The paper provides a guideline for the construction and maintenance of LVT structure in heavy haul railway.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2876
Author(s):  
Yingying Zhang ◽  
Lingyu Zhou ◽  
Akim D. Mahunon ◽  
Guangchao Zhang ◽  
Xiusheng Peng ◽  
...  

The mechanical performance of China Railway Track System type II (CRTS II) ballastless track suitable for High-Speed Railway (HSR) bridges is investigated in this project by testing a one-quarter-scaled three-span specimen under thermal loading. Stress analysis was performed both experimentally and numerically, via finite-element modeling in the latter case. The results showed that strains in the track slab, in the cement-emulsified asphalt (CA) mortar and in the track bed, increased nonlinearly with the temperature increase. In the longitudinal direction, the zero-displacement section between the track slab and the track bed was close to the 1/8L section of the beam, while the zero-displacement section between the track slab and the box girder bridge was close to the 3/8L section. The maximum values of the relative vertical displacement between the track bed and the bridge structure occurred in the section at three-quarters of the span. Numerical analysis showed that the lower the temperature, the larger the tensile stresses occurring in the different layers of the track structure, whereas the higher the temperature, the higher the relative displacement between the track system and the box girder bridge. Consequently, quantifying the stresses in the various components of the track structure resulting from sudden temperature drops and evaluating the relative displacements between the rails and the track bed resulting from high-temperature are helpful in the design of ballastless track structures for high-speed railway lines.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 169
Author(s):  
Kazem Jadidi ◽  
Morteza Esmaeili ◽  
Mehdi Kalantari ◽  
Mehdi Khalili ◽  
Moses Karakouzian

Asphalt is a common material that is used extensively for roadways. Furthermore, bituminous mixes have been used in railways, both as asphalt and as mortar. Different agencies and research institutes have investigated and suggested various applications. These studies indicate the benefits of bituminous material under railways, such as improving a substructure’s stiffness and bearing capacity; enhancing its dynamic characteristics and response, especially under high-speed train loads; waterproofing the subgrade; protecting the top layers against fine contamination. These potential applications can improve the overall track structure performance and lead to minimizing settlement under heavy loads. They can also guarantee an appropriate response under high-speed loads, especially in comparison to a rigid slab track. This review paper documents the literature related to the utilization of asphalt and bituminous mixes in railway tracks. This paper presents a critical review of the research in the application of asphalt and bituminous mixes in railway tracks. Additionally, this paper reviews the design and construction recommendations and procedures for asphalt and bituminous mixes in railway tracks as practiced in different countries. This paper also provides case studies of projects where asphalt and bituminous mixes have been utilized in railway tracks. It is anticipated that this review paper will facilitate (1) the exchange of ideas and innovations in the area of the design and construction of railway tracks and (2) the development of unified standards for the design and construction of railway tracks with asphalt and bituminous mixtures.


2005 ◽  
Vol 3 (1) ◽  
pp. 41-51 ◽  
Author(s):  
Kenji Kawai ◽  
Takafumi Sugimaya ◽  
Koichi Kobayashi ◽  
Susumu Sano

2019 ◽  
Vol 92 ◽  
pp. 16010
Author(s):  
Benjamin Cerfontaine ◽  
Jonathan Knappett ◽  
Michael Brown ◽  
Aaron Bradshaw

Plate and screw anchors provide a significant uplift capacity and have multiple applications in both onshore and offshore geotechnical engineering. Uplift design methods are mostly based on semi-empirical approaches assuming a failure mechanism, a normal and a shear stress distribution at failure and empirical factors back-calculated against experimental data. However, these design methods are shown to under- or overpredict most of the existing larger scale experimental tests. Numerical FE simulations are undertaken to provide new insight into the failure mechanism and stress distribution which should be considered in anchor design in dense sand. Results show that a conical shallow wedge whose inclination to the vertical direction is equal to the dilation angle is a good approximation of the failure mechanism in sand. This shallow mechanism has been observed in each case for relative embedment ratios (depth/diameter) ranging from 1 to 9. However, the stress distribution varies non-linearly with depth, due to the soil deformability and progressive failure. A sharp peak of normal and shear stress can be identified close to the anchor edge, before a gradual decrease with increasing distance along the shear plane. The peak stress magnitude increases almost linearly with embedment depth at larger relative embedment ratios. Although further research is necessary, these results lay the basis for the development of a new generation of design criteria for determining anchor capacity at the ultimate limiting state.


Author(s):  
Yu Guo ◽  
Yu Hou ◽  
Qi Zhao ◽  
Xionghao Ren ◽  
Shuangtao Chen ◽  
...  

Foil bearing is considered to be a promising supporting technology in high-speed centrifugal machinery. Due to the high-speed shearing effect in the viscous lubricant film, heat generation could not be ignored. In this paper, a thermo-elastic model of the multi-leaf foil thrust bearing is proposed to predict its thermal and static characteristics. In the model, modified Reynolds equation, energy equation, and Kirchhoff equation are solved in a coupling way. The contact area between the foil and welding plate is taken into account. Besides, the effect of cooling air on the bearing temperature is investigated. The ultimate load capacity and transient overload failure process of the bearing is analyzed and discussed. The effect of rotation speed on the bearing temperature is more obvious than that of the bearing load. The bearing temperature drops obviously by introducing the cooling air, and the cooling effect is improved with the supply pressure. The transient overload failure of the bearing occurs when the bearing load exceeds the ultimate value.


Sign in / Sign up

Export Citation Format

Share Document