Micro Grooving of Cemented Carbide Using PCD Blade

Author(s):  
Keishi Yamaguchi ◽  
Takumi Sugimoto ◽  
Minoru Ota ◽  
Kai Egashira

Abstract Ultra–Agile Advanced Manufacturing System (U–AMS) has been proposed for an agile prototyping system of research and development, and Super Processing Center (SPC) has been developing as a core machine tool of U–AMS. SPC has high accuracy and rigidity by double column structure based on a vertical precision machining center, hydrostatic oil guides and hydro static/dynamic hybrid oil bearing. In addition, SPC can perform various processing functions by mounting various processing units. Micro grooving by grinding has been researching for one of the SPC unit. PCD blade was developed for micro grooving using SPC. PCD blade was made from PCD disc using wire electrical discharge machining. This paper describes the fabrication method of PCD blade, and the machining characteristics of cemented carbide using PCD blade. In the fabrication method of PCD blade, it was clarified that the cross-sectional shape of PCD blade depended on the feed speed of wire electrode. Micro grooving on cemented carbide surface was performed using developed PCD blade and SPC. As a result, it was confirmed that the micro grooves can be machined using PCD blade, and the width of groove was almost same value as the width of PCD blade. The wear of PCD blade after grooving with 200 grooves was estimated by the depth of grooves. As a result, it was clarified that the wear of PCD blade is approximately 5 μm.

Micromachines ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 22
Author(s):  
Douyan Zhao ◽  
Zhaoyang Zhang ◽  
Hao Zhu ◽  
Zenghui Cao ◽  
Kun Xu

Electrochemical discharge machining (ECDM) and laser machining are emerging nontraditional machining technologies suitable for micro-processing of insulating and hard-brittle materials typified by glass. However, poor machinability of glass is a major constraint, which remains to be solved. For the micro-grooves processed by ECDM, the bottom surface is usually uneven and associated with protrusion structures, while the edges are not straight with obvious wave-shaped heat-affected zones (HAZs) and over-cutting. Besides, the cross section of the micro-grooves processed by the laser is V-shape with a large taper. To solve these problems, this study proposed the laser-assisted ECDM for glass micro-grooving, which combines ECDM and laser machining. This study compared morphological features of the single processing method and the hybrid processing method. The results show that ECDM caused cylindrical protrusions at the bottom of the microgrooves. After processing these micro-grooves by laser, the cylindrical protrusions were removed. However, the edge quality of the microgrooves was still poor. Therefore, we used the laser to get microgrooves first, so we got micro-grooves with better edge quality. Then we use ECDM to improve the taper of microgrooves and the cross-sectional shape of the microgrooves transformed from a V-shape to a U-shape.


Author(s):  
J.-F. Revol ◽  
Y. Van Daele ◽  
F. Gaill

The only form of cellulose which could unequivocally be ascribed to the animal kingdom is the tunicin that occurs in the tests of the tunicates. Recently, high-resolution solid-state l3C NMR revealed that tunicin belongs to the Iβ form of cellulose as opposed to the Iα form found in Valonia and bacterial celluloses. The high perfection of the tunicin crystallites led us to study its crosssectional shape and to compare it with the shape of those in Valonia ventricosa (V.v.), the goal being to relate the cross-section of cellulose crystallites with the two allomorphs Iα and Iβ.In the present work the source of tunicin was the test of the ascidian Halocvnthia papillosa (H.p.). Diffraction contrast imaging in the bright field mode was applied on ultrathin sections of the V.v. cell wall and H.p. test with cellulose crystallites perpendicular to the plane of the sections. The electron microscope, a Philips 400T, was operated at 120 kV in a low intensity beam condition.


2012 ◽  
Vol 27 (2) ◽  
pp. 264-269 ◽  
Author(s):  
Christian Lorbach ◽  
Ulrich Hirn ◽  
Johannes Kritzinger ◽  
Wolfgang Bauer

Abstract We present a method for 3D measurement of fiber cross sectional morphology from handsheets. An automated procedure is used to acquire 3D datasets of fiber cross sectional images using an automated microtome and light microscopy. The fiber cross section geometry is extracted using digital image analysis. Simple sample preparation and highly automated image acquisition and image analysis are providing an efficient tool to analyze large samples. It is demonstrated that if fibers are tilted towards the image plane the images of fiber cross sections are always larger than the true fiber cross section geometry. In our analysis the tilting angles of the fibers to the image plane are measured. The resulting fiber cross sectional images are distorted to compensate the error due to fiber tilt, restoring the true fiber cross sectional shape. We use an approximated correction, the paper provides error estimates of the approximation. Measurement results for fiber wall thickness, fiber coarseness and fiber collapse are presented for one hardwood and one softwood pulp.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Arun Prasad R ◽  
Thanigaiarasu S ◽  
Sembaruthi M ◽  
Rathakrishnan E

AbstractThe present numerical study is to understand the effect of air tabs located at the exit of a convergent nozzle on the spreading and mixing characteristics of correctly expanded sonic primary jet. Air tabs used in this study are two secondary jets issuing from constant diameter tubes located diametrically opposite at the periphery of the primary nozzle exit, normal to the primary jet. Two air tabs of Mach numbers 1.0 to 1.4, in steps of 0.1 are considered in this study. The mixing modification caused by air tabs are analysed by considering the mixing of uncontrolled (free) primary jet as a reference. Substantial enhancement in jet mixing is achieved with Mach 1.4 air tabs, which results in 80 % potential core length reduction. The total pressure profiles taken on the plane (YZ) normal to the primary jet axis, at various locations along the primary jet centreline revealed the modification of the jet cross sectional shape by air tabs. The stream-wise vortices and bifurcation of the primary jet caused by air tabs are found to be the mechanism behind the enhanced jet mixing.


Author(s):  
Yingzi Chen ◽  
Zhiyuan Yang ◽  
Wenxiong Peng ◽  
Huaiqing Zhang

Magnetic pulse welding is a high-speed welding technology, which is suitable for welding light metal materials. In the magnetic pulse welding system, the field shaper can increase the service life of the coil and contribute to concentrating the magnetic field in the welding area. Therefore, optimizing the structure of the field shaper can effectively improve the efficiency of the system. This paper analyzed the influence of cross-sectional shape and inner angle of the field shaper on the ability of concentrating magnetic field via COMSOL software. The structural strength of various field shapers was also analyzed in ABAQUS. Simulation results show that the inner edge of the field shaper directly affects the deformation and welding effect of the tube. So, a new shape of field shaper was proposed and the experimental results prove that the new field shaper has better performance than the conventional field shaper.


Author(s):  
Kelly Williams ◽  
Martin J. Langenderfer ◽  
Gayla Olbricht ◽  
Catherine E. Johnson

2017 ◽  
Vol 24 (2) ◽  
pp. 279-288
Author(s):  
Qiang Chen ◽  
Zhi Zhai ◽  
Xiaojun Zhu ◽  
Caibin Xu ◽  
Xuefeng Chen

AbstractThe primary goal of this paper is to investigate the combined effects of strain rate and microscopic parameters (fiber off-axis orientation, array pattern and cross-sectional shape) on the mechanical behavior of metal matrix composites (MMCs). To this end, a rate-dependent micromechanical model by the combination of finite-volume theory and Bodner-Partom viscoplastic model is developed to analyze the inelastic response of MMCs. In the simulations, the fibers are modeled as linearly elastic while the metal matrix exhibits viscoplasticity. The macroscopic stress-strain response, local stress and strain fields are obtained simultaneously. An acceptable agreement has been found between the model’s prediction and finite-element results, which demonstrates the good predictive capabilities of the proposed method. It is concluded that the composite response is strongly affected by strain rate, fiber array pattern and cross-sectional shape in the elastic-plastic region but to a lesser extent in the elastic region. Furthermore, the clustering array provides stiffer response than random and square ones; the square fiber predicts stiffer response than circular and elliptical ones. However, increasing the strain rate will weaken the influence of clustering array and square fibers.


2021 ◽  
Vol 23 ◽  
pp. 42-64
Author(s):  
Boris Basok ◽  
Ihor Bozhko ◽  
Maryna Novitska ◽  
Aleksandr Nedbailo ◽  
Myroslav Tkachenko

This article is devoted to the analysis of the heat engineering characteristics of the operation of an Earth-to-Air Heat Exchanger, EAHE, with a circular cross-sectional shape, which is a component of the geothermal ventilation system. The authors analyzed literature sources devoted to the research of heat exchangers of the soil-air type of various designs and for working conditions in various soils. Much attention is paid to the issues of modeling the operation of such heat exchangers and the distinctive features of each of these models. Also important are the results of experimental studies carried out on our own experimental bench and with the help of which the numerical model was validated. The results of these studies are the basis for the development of a method for determining the optimal diameter of an EAHE under operating conditions for soil in Kyiv, Ukraine.


1953 ◽  
Vol 20 (2) ◽  
pp. 201-209
Author(s):  
B. J. Lazan

Abstract The amplitude of vibration of a member at resonance, as defined by its resonance amplification factor, is analyzed in relationship to the damping properties of materials. Data are presented on damping energy to indicate the effect of stress magnitude, stress history, and temperature. Based on the mathematical relationship found to exist between damping and stress magnitude the resonance amplification factors are determined for a variety of direct stress members and beams. It is shown that the amplification in vibration caused by resonance may be considered to be the product of three basic factors, i.e., (a) the material factor, (b) the cross-sectional shape factor, and (c) the longitudinal stress-distribution factor. The first of these factors may be calculated from the damping and dynamic modulus properties of the material and the last two from the shape and loading characteristics of the member. Diagrams are presented to show these basic factors as functions of the damping exponent and other variables for members commonly encountered in engineering practice. Experimental data are presented to confirm the equations derived for resonance amplification factor of members having various shapes and stress distribution.


Sign in / Sign up

Export Citation Format

Share Document