Effects of Operating Conditions on the Heat Management of a Microscale Fuel Cell

Author(s):  
Liyong Sun ◽  
Adam S. Hollinger ◽  
Jun Zhou

Abstract Higher energy densities and the potential for nearly instantaneous recharging make microscale fuel cells very attractive as power sources for portable technology in comparison with standard battery technology. Heat management is very important to the microscale fuel cells because of the generation of waste heat. Waste heat generated in polymer electrolyte membrane fuel cells includes oxygen reduction reaction in the cathode catalyst, hydrogen oxidation reaction in the anode catalyst, and Ohmic heating in the membrane. A novel microscale fuel cell design is presented here that utilizes a half-membrane electrode assembly. An ANSYS Fluent model is presented to investigate the effects of operating conditions on the heat management of this microscale fuel cell. Five inlet fuel temperatures are 22°C, 40°C, 50°C, 60°C, and 70°C. Two fuel flow rate are 0.3 mL/min and 2 mL/min. The fuel cell is simulated under natural convection and forced convection. The simulations predict thermal profiles throughout this microscale fuel cell design. The exit temperature of fuel stream, oxygen stream and nitrogen stream are obtained to determine the rate of heat removal. Simulation results show that the fuel stream dominates heat removal at room temperature. As inlet fuel temperature increases, the majority of heat removal occurs via convection with the ambient air by the exposed current collector surfaces. The top and bottom current collector removes almost the same amount of heat. The model also shows that the heat transfer through the oxygen channel and nitrogen channel is minimal over the range of inlet fuel temperatures. Increasing fuel flow rate and ambient air flow both increase the heat removal by the exposed current collector surfaces. Ultimately, these simulations can be used to determine design points for best performance and durability in a single-channel microscale fuel cell.

Author(s):  
Liyong Sun ◽  
Adam S. Hollinger

Considerable waste heat is generated via the oxygen reduction reaction in polymer electrolyte membrane fuel cells. Consequently, heat generation and removal in conventional fuel cell architectures has been carefully investigated in order to achieve effective thermal management. Here we present a novel microscale fuel cell design that utilizes a half-membrane electrode assembly. In this design, a single fuel/electrolyte stream provides an additional pathway for heat removal that is not present in traditional fuel cell architectures. The model presented here investigates heat removal over a range of inlet fuel temperatures. Heat generation densities are determined experimentally for all inlet fuel temperatures. The simulations presented here predict thermal profiles throughout this microscale fuel cell design. Simulation results show that the fuel stream dominates heat removal at room temperature. As inlet fuel temperature increases, the majority of heat removal occurs via convection with the ambient air. The model also shows that heat transfer through the oxidant channel is minimal over the range of inlet fuel temperatures.


Author(s):  
S. Shahsavari ◽  
M. Bahrami ◽  
E. Kjeang

Temperature distribution in a fuel cell significantly affects the performance and efficiency of the fuel cell system. Particularly, in low temperature fuel cells, improvement of the system requires addressing the heat management issues, which reveals the importance of developing thermal models. In this study, a 3D numerical thermal model is presented to analyze heat transfer and predict the temperature distribution in air-cooled proton exchange membrane fuel cells (PEMFC). In the modeled fuel cell stack, forced air flow supplies oxidant as well as cooling. Conservation equations of mass, momentum, and energy are solved in the oxidant channel, whereas energy equation is solved in the entire domain, including the gas diffusion layers (GDLs) and separator plates, which play a significant role in heat transfer. A parametric study is done to investigate the effect of various operating conditions on maximum cell temperature. The results are further validated with experiment. This model provides a theoretical foundation for thermal analysis of air-cooled stacks, where temperature non-uniformity is high and thermal management and stack cooling is a significant engineering challenge.


Author(s):  
Shuo-Jen Lee ◽  
Kung-Ting Yang ◽  
Yu-Ming Lee ◽  
Chi-Yuan Lee

In this research, electrochemical impedance spectroscopy is employed to monitor the resistance of a fuel cell during operation with different operating conditions and different materials for the bipolar plates. The operating condition variables are cell humidity, pure oxygen or air as oxidizer, and current density. Three groups of single cells were tested: a graphite cell, a stainless steel cell (treated and original), and a thin, small, treated stainless steel cell. A treated cell here means using an electrochemical treatment to improve bipolar plate anticorrosion capability. From the results, the ohmic resistance of a fully humidified treated stainless steel fuel cell is 0.28 Ω cm2. Under the same operating conditions, the ohmic resistance of the graphite and the original fuel cell are each 0.1 Ω cm2 and that of the small treated cell is 0.3 Ω cm2. Cell humidity has a greater influence on resistance than does the choice of oxidizer; furthermore, resistance variation due to humidity effects is more serious with air support. From the above results, fuel cells fundamental phenomenon such as ohmic resistance, charge transfer resistance, and mass transport resistance under different operating conditions could be evaluated.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1432
Author(s):  
Lev Zakhvatkin ◽  
Alex Schechter ◽  
Eilam Buri ◽  
Idit Avrahami

During aerial missions of fuel-cell (FC) powered drones, the option of FC edge cooling may improve FC performance and durability. Here we describe an edge cooling approach for fixed-wing FC-powered drones by removing FC heat using the ambient air during flight. A set of experiments in a wind tunnel and numerical simulations were performed to examine the efficiency of FC edge cooling at various flight altitudes and cruise speeds. The experiments were used to validate the numerical model and prove the feasibility of the proposed method. The first simulation duplicated the geometry of the experimental setup and boundary conditions. The calculated temperatures of the stack were in good agreement with those of the experiments (within ±2 °C error). After validation, numerical models of a drone’s fuselage in ambient air with different radiator locations and at different flight speeds (10–30 m/s) and altitudes (up to 5 km) were examined. It was concluded that onboard FC edge cooling by ambient air may be applicable for velocities higher than 10 m/s. Despite the low pressure, density, and Cp of air at high altitudes, heat removal is significantly increased with altitude at all power and velocity conditions due to lower air temperature.


Author(s):  
Mohammad Kazemi Nasrabadi ◽  
Amir Ebrahimi-Moghadam ◽  
Mohammad Hosein Ahmadi ◽  
Ravinder Kumar ◽  
Narjes Nabipour

Due to low working temperature, high energy density and low pollution, proton exchange fuel cells have been investigated under different operating conditions in different applications. Using platinum catalysts in methanol fuel cells leads to increasing the cost of this kind of fuel cell which is considered as a barrier to the commercialism of this technology. For this reason, a lot of efforts have been made to reduce the loading of the catalyst required on different supports. In this study, carbon black (CB) and carbon nanotubes (CNT) have been used as catalyst supports of the fuel cell as well as using the double-metal combination of platinum-ruthenium (PtRu) as anode electrode catalyst and platinum (Pt) as cathode electrode catalyst. The performance of these two types of electro-catalyst in the oxidation reaction of methanol has been compared based on electrochemical tests. Results showed that the carbon nanotubes increase the performance of the micro-fuel cell by 37% at maximum power density, compared to the carbon black. Based on thee-electrode tests of chronoamperometry and voltammetry, it was found that the oxidation onset potential of methanol for CNT has been around 20% less than CB, leading to the kinetic improvement of the oxidation reaction. The current density of methanol oxidation reaction increased up to 62% in CNT sample compared to CB supported one, therefore the active electrochemical surface area of the catalyst has been increased up to 90% by using CNT compared to CB which shows the significant rise of the electrocatalytic activity in CNT supported catalyst. Moreover, the resistance of the CNT supported sample to poisonous intermediate species has been found 3% more than CB supported one. According to the chronoamperometry test results, it was concluded that the performance and sustainability of the CNT electro-catalyst show remarkable improvement compared to CB electro-catalyst in the long term.


2018 ◽  
Vol MA2018-01 (32) ◽  
pp. 1992-1992
Author(s):  
Mohamed El Hannach ◽  
Ka Hung Wong ◽  
Yadvinder Singh ◽  
Narinder Singh Khattra ◽  
Erik Kjeang

The hydrogen fuel cell is a promising technology that supports the development of sustainable energy systems and zero emission vehicles. One of the key technical challenges for the use of fuel cells in the transportation sector is the high durability requirements 1–3. One of the key components that control the overall life time of a hydrogen fuel cell is the ionomer membrane that conducts the protons and allows the separation between the anode and the cathode. During fuel cell operation, the membrane is subjected to two categories of degradation: mechanical and chemical. These degradations lead to reduction in the performance, crossover of reactants between anode and cathode and ultimately total failure of the fuel cell. The mechanical degradation occurs when the membrane swells and shrinks under the variation of the local hydration level. This leads to fatigue of the ionomer structure and ultimately irreversible damage. However, under pure mechanical degradation the damage takes a very long time to occur 4,5. Sadeghi et al. 5 observed failure of the membrane after 20,000 of accelerated mechanical stress testing. This translates into a longer lifetime in comparison to what is observed in field operation 6. The chemical degradation on the other hand is caused by the presence of harmful chemicals such as OH radicals that attack the side chains and the main chains of the ionomer 7,8. Such attacks weaken the structural integrity of the membrane and make it prone to severe mechanical damage. Hence understanding the effect of combining both categories of membrane degradation is the key to accurate prediction of the time to failure of the fuel cell. In this work we propose a novel model that represents accurately the structural properties of the membrane and couples the chemical and the mechanical degradations to estimate when the ultimate failure is initiated. The model is based on a network of agglomerated fibrils corresponding to the basic building block of the membrane structure 9–11. The mechanical and chemical properties are defined for each fibril and probability functions are used to evaluate the likelihood of a fibril to break under certain operating conditions. The description of the fundamentals behind the approach will be presented. Two set of simulations will be presented and discussed. The first one corresponding to standard testing scenarios that were used to validate the model. The second set of results will highlight the impact of coupling both degradation mechanisms on the estimation of the failure initiation time. The main strengths of the model and the future development will be discussed as well. T. Sinigaglia, F. Lewiski, M. E. Santos Martins, and J. C. Mairesse Siluk, Int. J. Hydrogen Energy, 42, 24597–24611 (2017). T. Jahnke et al., J. Power Sources, 304, 207–233 (2016). P. Ahmadi and E. Kjeang, Int. J. Energy Res., 714–727 (2016). X. Huang et al., J. Polym. Sci. Part B Polym. Phys., 44, 2346–2357 (2006). A. Sadeghi Alavijeh et al., J. Electrochem. Soc., 162, F1461–F1469 (2015). N. Macauley et al., J. Power Sources, 336, 240–250 (2016). K. H. Wong and E. Kjeang, J. Electrochem. Soc., 161, F823–F832 (2014). K. H. Wong and E. Kjeang, ChemSusChem, 8, 1072–1082 (2015). P.-É. A. Melchy and M. H. Eikerling, J. Phys. Condens. Matter, 27, 325103–6 (2015). J. A. Elliott et al., Soft Matter, 7, 6820 (2011). L. Rubatat, G. Gebel, and O. Diat, Macromolecules, 37, 7772–7783 (2004).


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1061 ◽  
Author(s):  
Raja Rafidah R. S. ◽  
Rashmi W. ◽  
Khalid M. ◽  
Wong W. Y. ◽  
Priyanka J.

Proton exchange membranes (PEMs) play a pivotal role in fuel cells; conducting protons from the anode to the cathode within the cell’s membrane electrode assembles (MEA) separates the reactant fuels and prevents electrons from passing through. High proton conductivity is the most important characteristic of the PEM, as this contributes to the performance and efficiency of the fuel cell. However, it is also important to take into account the membrane’s durability to ensure that it canmaintain itsperformance under the actual fuel cell’s operating conditions and serve a long lifetime. The current state-of-the-art Nafion membranes are limited due to their high cost, loss of conductivity at elevated temperatures due to dehydration, and fuel crossover. Alternatives to Nafion have become a well-researched topic in recent years. Aromatic-based membranes where the polymer chains are linked together by aromatic rings, alongside varying numbers of ether, ketone, or sulfone functionalities, imide, or benzimidazoles in their structures, are one of the alternatives that show great potential as PEMs due totheir electrochemical, mechanical, and thermal strengths. Membranes based on these polymers, such as poly(aryl ether ketones) (PAEKs) and polyimides (PIs), however, lack a sufficient level of proton conductivity and durability to be practical for use in fuel cells. Therefore, membrane modifications are necessary to overcome their drawbacks. This paper reviews the challenges associated with different types of aromatic-based PEMs, plus the recent approaches that have been adopted to enhance their properties and performance.


2005 ◽  
Vol 127 (1) ◽  
pp. 86-90 ◽  
Author(s):  
Eric A. Liese ◽  
Randall S. Gemmen

Solid Oxide Fuel Cell (SOFC) developers are presently considering both internal and external reforming fuel cell designs. Generally, the endothermic reforming reaction and excess air through the cathode provide the cooling needed to remove waste heat from the fuel cell. Current information suggests that external reforming fuel cells will require a flow rate twice the amount necessary for internal reforming fuel cells. The increased airflow could negatively impact system performance. This paper compares the performance among various external reforming hybrid configurations and an internal reforming hybrid configuration. A system configuration that uses the reformer to cool a cathode recycle stream is introduced, and a system that uses interstage external reforming is proposed. Results show that the thermodynamic performance of these proposed concepts are an improvement over a base-concept external approach, and can be better than an internal reforming hybrid system, depending on the fuel cell cooling requirements.


Author(s):  
Torsten Berning

Abstract A numerical analysis of an air-cooled proton exchange membrane fuel cell (PEMFC) has been conducted. The model utilizes the Eulerian multi-phase approach to predict the occurrence and transport of liquid water inside the cell. It is assumed that all the waste heat must be carried out of the fuel cell with the excess air which leads to a strong temperature increase of the air stream. The results suggest that the performance of these fuel cells is limited by membrane overheating which is ultimately caused by the limited heat transfer to the laminar air stream. A proposed remedy is the placement of a turbulence grid before such a fuel cell stack to enhance the heat transfer and increase the fuel cell performance.


Author(s):  
Ju¨rgen Karl ◽  
Nadine Frank ◽  
Sotiris Karellas ◽  
Mathilde Saule ◽  
Ulrich Hohenwarter

Conversion of biomass in syngas by means of indirect gasification offers the option to improve the economic situation of any fuel cell systems due to lower costs for feedstock and higher power revenues in many European countries. The coupling of an indirect gasification of biomass and residues with highly efficient SOFC systems is therefore a promising technology for reaching economic feasibility of small decentralized combined heat and power production (CHP). The predicted efficiency of common high temperature fuel cell systems with integrated gasification of solid feedstock is usually significantly lower than the efficiency of fuel cells operated with hydrogen or methane. Additional system components like the gasifier, as well as the gas cleaning reduce this efficiency. Hence common fuel cell systems with integrated gasification of biomass will hardly reach electrical efficiencies above 30 percent. An extraordinary efficient combination is achieved in case that the fuel cells waste heat is used in an indirect gasification system. A simple combination of a SOFC and an allothermal gasifier enables then electrical efficiencies above 50%. But this systems requires an innovative cooling concept for the fuel cell stack. Another significant question is the influence of impurities on the fuel cells degradation. The European Research Project ‘BioCellus’ focuses on both questions — the influence of the biogenious syngas on the fuel cells and an innovative cooling concept based on liquid metal heat pipes. First experiments showed that in particular higher hydrocarbons — the so-called tars — do not have an significant influence on the performance of SOFC membranes. The innovative concept of the TopCycle comprises to heat an indirect gasifier with the exhaust heat of the fuel cell by means of liquid metal heat pipes. Internal cooling of the stack and the recirculation of waste heat increases the system efficiency significantly. This concept promises electrical efficiencies of above 50 percent even for small-scale systems without any combined processes.


Sign in / Sign up

Export Citation Format

Share Document