Mechanism Research of Coupling Drag Reduction and Heat Transfer on Surface With Different Liquid-Solid Interaction

Author(s):  
Lin Shi ◽  
Chengzhi Hu ◽  
Minli Bai ◽  
Jizu Lv ◽  
Yubai Li

Abstract In order to study the effect of liquid-solid interaction and surface temperature on drag reduction and heat transfer, non-equilibrium molecular dynamics simulation is performed to investigate the density profile, velocity profile, velocity slip and temperature profile of fluid by changing liquid-solid interaction factor α and surface temperature. The result shows that there is a low density layer near the surface when α is small (weak liquid-solid interaction), larger α (strong liquid-solid interaction) can induce density oscillation and solid-like layer near the surface. Velocity slip will decrease as the increases of α. It’s worth noting that for α < 0.02, the density oscillation becomes more obvious as the rises of temperature, which impairs drag reduction; For α > 0.02 , the rises of temperature will impair the oscillation, which enhances drag reduction. Due to the existence of low density layer, the heat transfer capacity is very weak when α is small, but the capacity will be enhanced as the increases of α.

Author(s):  
Masoud Darbandi ◽  
Hossein Reza Abbasi ◽  
Moslem Sabouri ◽  
Rasool Khaledi-Alidusti

We investigate heat transfer between parallel plates separated by liquid argon using two-dimensional molecular dynamics (MD) simulations incorporating with 6–12 Lennard-Jones potential between molecule pairs. In molecular dynamics simulation of nanoscale flows through nanochannels, it is customary to fix the wall molecules. However, this approach cannot suitably model the heat transfer between the fluid molecules and wall molecules. Alternatively, we use thermal walls constructed from the oscillating molecules, which are connected to their original positions using linear spring forces. This approach is much more effective than the one which uses a fixed lattice wall modeling to simulate the heat transfer between wall and fluid. We implement this idea in analyzing the heat transfer in a few cases, including the shear driven and poiseuille flow with specified heat flux boundary conditions. In this method, the work done by the viscous stress (in case of shear driven flow) and the force applied to the fluid molecules (in case of poiseuille flow) produce heat in the fluid, which is dissipated from the nanochannel walls. We present the velocity profiles and temperature distributions for the both chosen test cases. As a result of interaction between the fluid molecules and their adjacent wall molecules, we can clearly observe the velocity slip in the velocity profiles and the temperature jump in the cross-sectional temperature distributions.


1986 ◽  
Vol 108 (3) ◽  
pp. 532-539 ◽  
Author(s):  
D. R. Jeng ◽  
T. C. A. Chang ◽  
K. J. De Witt

An analysis has been carried out to determine the momentum and heat transfer occurring in the laminar boundary layer on a continuous moving surface which has an arbitrary surface velocity and nonuniform surface temperature. Merk series types of solutions are obtained for the momentum and heat transfer for an isothermal surface. The results are expressed in terms of universal functions. For a nonisothermal surface, the procedure begins with a consideration of the solution of the energy equation for a step discontinuity in the surface temperature by the introduction of appropriate transformation variables. Equations for the temperature profile and for the local heat flux are expressed explicitly in terms of the Prandtl number and the surface velocity parameter. Numerical examples for a power law surface velocity and a linearly stretching surface velocity with nonzero slot velocity are given for the isothermal surface. The accuracy of the present solutions is also discussed.


2019 ◽  
Vol 21 (2) ◽  
pp. 1310-1320
Author(s):  
Cícera Celiane Januário da Silva ◽  
Vinicius Ferreira Luna ◽  
Joyce Ferreira Gomes ◽  
Juliana Maria Oliveira Silva

O objetivo do presente trabalho é fazer uma comparação entre a temperatura de superfície e o Índice de Vegetação por Diferença Normalizada (NDVI) na microbacia do rio da Batateiras/Crato-CE em dois períodos do ano de 2017, um chuvoso (abril) e um seco (setembro) como também analisar o mapa de diferença de temperatura nesses dois referidos períodos. Foram utilizadas imagens de satélite LANDSAT 8 (banda 10) para mensuração de temperatura e a banda 4 e 5 para geração do NDVI. As análises demonstram que no mês de abril a temperatura da superfície variou aproximadamente entre 23.2ºC e 31.06ºC, enquanto no mês correspondente a setembro, os valores variaram de 25°C e 40.5°C, sendo que as maiores temperaturas foram encontradas em locais com baixa densidade de vegetação, de acordo com a carta de NDVI desses dois meses. A maior diferença de temperatura desses dois meses foi de 14.2°C indicando que ocorre um aumento da temperatura proporcionado pelo período que corresponde a um dos mais secos da região, diferentemente de abril que está no período de chuvas e tem uma maior umidade, presença de vegetação e corpos d’água que amenizam a temperatura.Palavras-chave: Sensoriamento Remoto; Vegetação; Microbacia.                                                                                  ABSTRACTThe objective of the present work is to compare the surface temperature and the Normalized Difference Vegetation Index (NDVI) in the Batateiras / Crato-CE river basin in two periods of 2017, one rainy (April) and one (September) and to analyze the temperature difference map in these two periods. LANDSAT 8 (band 10) satellite images were used for temperature measurement and band 4 and 5 for NDVI generation. The analyzes show that in April the surface temperature varied approximately between 23.2ºC and 31.06ºC, while in the month corresponding to September, the values ranged from 25ºC and 40.5ºC, and the highest temperatures were found in locations with low density of vegetation, according to the NDVI letter of these two months. The highest difference in temperature for these two months was 14.2 ° C, indicating that there is an increase in temperature provided by the period that corresponds to one of the driest in the region, unlike April that is in the rainy season and has a higher humidity, presence of vegetation and water bodies that soften the temperature.Key-words: Remote sensing; Vegetation; Microbasin.RESUMENEl objetivo del presente trabajo es hacer una comparación entre la temperatura de la superficie y el Índice de Vegetación de Diferencia Normalizada (NDVI) en la cuenca Batateiras / Crato-CE en dos períodos de 2017, uno lluvioso (abril) y uno (Septiembre), así como analizar el mapa de diferencia de temperatura en estos dos períodos. Las imágenes de satélite LANDSAT 8 (banda 10) se utilizaron para la medición de temperatura y las bandas 4 y 5 para la generación de NDVI. Los análisis muestran que en abril la temperatura de la superficie varió aproximadamente entre 23.2ºC y 31.06ºC, mientras que en el mes correspondiente a septiembre, los valores oscilaron entre 25 ° C y 40.5 ° C, y las temperaturas más altas se encontraron en lugares con baja densidad de vegetación, según el gráfico NDVI de estos dos meses. La mayor diferencia de temperatura de estos dos meses fue de 14.2 ° C, lo que indica que hay un aumento en la temperatura proporcionada por el período que corresponde a uno de los más secos de la región, a diferencia de abril que está en la temporada de lluvias y tiene una mayor humedad, presencia de vegetación y cuerpos de agua que suavizan la temperatura.Palabras clave: Detección remota; vegetación; Cuenca.


2019 ◽  
Vol 111 ◽  
pp. 01001
Author(s):  
Hansol Lim ◽  
Hye-Jin Cho ◽  
Seong-Yong Cheon ◽  
Soo-Jin Lee ◽  
Jae-Weon Jeong

A phase change material based radiant cooling panel with thermoelectric module (PCM-TERCP) is proposed in this study. It consists of two aluminium panels, and phase change materials (PCMs) sandwiched between the two panels. Thermoelectric modules (TEMs) are attached to one of the aluminium panels, and heat sinks are attached to the top side of TEMs. PCM-TERCP is a thermal energy storage concept equipment, in which TEMs freeze the PCM during the night whose melting temperature is 16○C. Therefore, the radiant cooling panel can maintain a surface temperature of 16◦C without the operation of TEM during the day. Furthermore, it is necessary to design the PCM-TERCP in a way that it can maintain the panel surface temperature during the targeted operating time. Therefore, the numerical model was developed using finite difference method to evaluate the thermal behaviour of PCM-TERCP. Experiments were also conducted to validate the performance of the developed model. Using the developed model, the possible operation time was investigated to determine the overall heat transfer coefficient required between radiant cooling panel and TEM. Consequently, the results showed that a overall heat transfer coefficient of 394 W/m2K is required to maintain the surface temperature between 16○C to 18○C for a 3 hours operation.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 180
Author(s):  
Asif Ali ◽  
Lorenzo Cocchi ◽  
Alessio Picchi ◽  
Bruno Facchini

The scope of this work was to develop a technique based on the regression method and apply it on a real cooled geometry for measuring its internal heat transfer distribution. The proposed methodology is based upon an already available literature approach. For implementation of the methodology, the geometry is initially heated to a known steady temperature, followed by thermal transient, induced by injection of ambient air to its internal cooling system. During the thermal transient, external surface temperature of the geometry is recorded with the help of infrared camera. Then, a numerical procedure based upon a series of transient finite element analyses of the geometry is applied by using the obtained experimental data. The total test duration is divided into time steps, during which the heat flux on the internal surface is iteratively updated to target the measured external surface temperature. The final procured heat flux and internal surface temperature data of each time step is used to find the convective heat transfer coefficient via linear regression. This methodology is successfully implemented on three geometries: a circular duct, a blade with U-bend internal channel, and a cooled high pressure vane of real engine, with the help of a test rig developed at the University of Florence, Italy. The results are compared with the ones retrieved with similar approach available in the open literature, and the pros and cons of both methodologies are discussed in detail for each geometry.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 656
Author(s):  
Zhangyu Zhu ◽  
Juan Li ◽  
Hao Peng ◽  
Dongren Liu

Heat exchangers are general equipment for energy exchange in the industrial field. Enhancing the heat transfer of a heat exchanger with low pump energy consumption is beneficial to the maximum utilization of energy. The optimization design for enhanced heat transfer structure is an effective method to improve the heat transfer coefficient. Present research shows that the biomimetic structures applied in different equipment could enhance heat transfer and reduce flow resistance significantly. Firstly, six biomimetic structures including the fractal-tree-like structure, conical column structure, hybrid wetting structure, scale structure, concave-convex structure and superhydrophobic micro-nano structure were summarized in this paper. The biomimetic structure characteristics and heat transfer enhancement and drag reduction mechanisms were analyzed. Secondly, four processing methods including photolithography, nanoimprinting, femtosecond laser processing and 3D printing were introduced as the reference of biomimetic structure machining. Finally, according to the systemic summary of the research review, the prospect of biomimetic heat transfer structure optimization was proposed.


Author(s):  
Sagnik Pal ◽  
Ranjan Das

The present paper introduces an accurate numerical procedure to assess the internal thermal energy generation in an annular porous-finned heat sink from the sole assessment of surface temperature profile using the golden section search technique. All possible heat transfer modes and temperature dependence of all thermal parameters are accounted for in the present nonlinear model. At first, the direct problem is numerically solved using the Runge–Kutta method, whereas for predicting the prevailing heat generation within a given generalized fin domain an inverse method is used with the aid of the golden section search technique. After simplifications, the proposed scheme is credibly verified with other methodologies reported in the existing literature. Numerical predictions are performed under different levels of Gaussian noise from which accurate reconstructions are observed for measurement error up to 20%. The sensitivity study deciphers that the surface temperature field in itself is a strong function of the surface porosity, and the same is controlled through a joint trade-off among heat generation and other thermo-geometrical parameters. The present results acquired from the golden section search technique-assisted inverse method are proposed to be suitable for designing effective and robust porous fin heat sinks in order to deliver safe and enhanced heat transfer along with significant weight reduction with respect to the conventionally used systems. The present inverse estimation technique is proposed to be robust as it can be easily tailored to analyse all possible geometries manufactured from any material in a more accurate manner by taking into account all feasible heat transfer modes.


Sign in / Sign up

Export Citation Format

Share Document