Experimental Investigation of Micro-Milling Accuracy Using On-Machine Measurement System

Author(s):  
Xinyu Liu

In this paper, we proposed an error decomposition method, in which some major error components can be experimentally estimated using an on-machine measurement (OMM) system. Unlike the conventional machining, the geometric error of a micro-tool, i.e., the deviation of the effective tool diameter from a nominal value, becomes a dominant factor affecting the machining accuracy. The error stems from both the tool fabrication error and the dynamic runout of the spindle system under high rpm. An on-machine measurement system based on a non-contact confocal laser sensor was developed that can accurately and efficiently acquire the effective tool diameter. To compensate the error due to the tool geometric error, the effective tool diameter was used to replace the nominal tool diameter to generate the tool path. The experimental results showed that the tool geometric error contributes over 50% to the total machining error. After compensation, the machining accuracy was significantly improved. The machine contour error has negligible influence on the dimension error of the machined feature, but it affects the form error, such as circularity of a machined hole. The process induced surface location errors were estimated from both experiments and model simulations, and good match was achieved.

2016 ◽  
Vol 851 ◽  
pp. 433-438
Author(s):  
Shu Jie Sun ◽  
Hu Lin ◽  
Liao Mo Zheng ◽  
Jin Gang Yu ◽  
Bei Bei Li ◽  
...  

To ensure the machining precision of work piece and improve the machining quality and machining efficiency, a dynamic transition method based on axial machining accuracy is given. Firstly, the maximum machining contour error is computed based on the axial machining accuracy, and the tool path is processed based on the machining contour error to reduce the amount of command points. Secondly, the circle transition method is used to make the tool path smoother and the machining efficiency higher. Finally, the radius of the transition circle is adjusted based on the maximum velocity of each transition circle. The experimental results shows that the method proposed could effectively satisfy the needs of the machining accuracy and improve the processing efficiency, while reduce the amount of path data.


Author(s):  
Shih-Ming Wang ◽  
Han-Jen Yu ◽  
Yi-Hung Liu ◽  
Da-Fun Chen

Technology development trends towards the ability to manufacture ever smaller parts and feature sizes with increased precision and decreased cost. Micro machining is one of the important manufacturing methods to fulfill the requirements from the industry. The objective of this paper is to develop an on-machine error measurement system that can identify the micro machining errors for error compensation so that the machining accuracy of a meso-scale machine tool (mMT) can be enhanced. Because of the difficulty in handling and repositioning the miniature workpiece, the error measurement system should be non-contact and on-machine executable. To meet this requirement, a vision-based error measurement system integrating image re-constructive technology, camera pixel correction, and model comparison algorithm error was developed in this study. The proposed measurement system consists of a CCD with CCTV lens, a precision 3-DOF platform, image re-construction sub-system, and contour error calculation sub-system. By adopting Canny Edge Detection algorithm and camera pixel calibration method, the contour of a machined workpiece can be identified and compared to the pixel-based theoretical contour model of the workpiece to determine the micro machining errors. Because the system does not have to remove the machined workpiece from the CNC machine tool, errors due to re-installing and re-positioning can be avoided. To prove the feasibility of the developed algorithm and system, measurement results obtained from the vision-based measurement system were compared with the measurements of CMM, and error compensation experiment conducted on a 3-DOF mMT was also conducted. The results have shown the good feasibility and effectiveness of the developed system.


Author(s):  
Jacob A. Kunz ◽  
Angela Sodemann ◽  
J. Rhett Mayor

In micro-milling, decreased tool size leads to a need for tighter tolerances for fixture error in order to avoid excessive tool load and maintain machining accuracy. In 4-axis machining on a curved surface, fixture errors propagate cumulatively leading to a significant error at the tool tip. As a result a compensation approach is essential to successful microfeature production on curved surfaces. Tool stresses are shown to be highly dependent on the amount of fixture error. The scaling down of tool sizes is shown to result in an exponential increase in tool stresses. This paper proposes the use of a conductive touch-off method that utilizes the milling tool in its spindle to perform an in-situ registration mapping of positional errors. The fixturing errors are characterized using the Denavit-Hartenberg robotic linkage convention. A forward kinematic solution uses homogeneous transformation matrices to investigate the effects of fixturing errors on milling tool path errors in 4-axis micro-milling on curved surfaces. The touch-off registration measures the positional error in the tool axis direction allowing for axial tool position compensation. This results in decreased tool stresses and increased channel depth accuracy which is necessary for successful milling. A preliminary implementation of the conductive touch-off registration approach has demonstrated the efficacy of the technique when applied to production of micro-features on concave surfaces.


2014 ◽  
Vol 800-801 ◽  
pp. 20-25 ◽  
Author(s):  
Shu Long Wang ◽  
Liang Li ◽  
Ning He ◽  
Rong Bian ◽  
Zhong Bo Zhan ◽  
...  

This paper presents a study on the tool wear of micro PCD end mill when machining ZrO2 ceramics. The cutting tool used was a self-designed PCD micro end mill with 1 mm in diameter and single flute. Experiments were conducted on a self-developed micro-milling machine tool. The tool wear characters and progress during the groove milling has been observed. The cutting force and machining accuracy of the grooves also have been studied. Based on the results, it is found that tool wear is mainly on the bottom surface; the cutting force increases with the progress of tool wear; tool wear also affect the width of machined grooves due to the decrease of effective tool diameter.


Author(s):  
Hongwei Liu ◽  
Rui Yang ◽  
Pingjiang Wang ◽  
Jihong Chen ◽  
Hua Xiang

The objective of this research is to develop a novel correction mechanism to reduce the fluctuation range of tools in numerical control (NC) machining. Error compensation is an effective method to improve the machining accuracy of a machine tool. If the difference between two adjacent compensation data is too large, the fluctuation range of the tool will increase, which will seriously affect the surface quality of the machined parts in mechanical machining. The methodology used in compensation data processing is a simplex method of linear programming. This method reduces the fluctuation range of the tool and optimizes the tool path. The important aspect of software error compensation is to modify the initial compensation data by using an iterative method, and then the corrected tool path data are converted into actual compensated NC codes by using a postprocessor, which is implemented on the compensation module to ensure a smooth running path of the tool. The generated, calibrated, and amended NC codes were immediately fed to the machine tool controller. This technique was verified by using repeated measurements. The results of the experiments demonstrate efficient compensation and significant improvement in the machining accuracy of the NC machine tool.


Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 88
Author(s):  
Yupeng Xin ◽  
Yuanheng Li ◽  
Wenhui Li ◽  
Gangfeng Wang

Cavities are typical features in aeronautical structural parts and molds. For high-speed milling of multi-cavity parts, a reasonable processing sequence planning can significantly affect the machining accuracy and efficiency. This paper proposes an improved continuous peripheral milling method for multi-cavity based on ant colony optimization algorithm (ACO). Firstly, by analyzing the mathematical model of cavity corner milling process, the geometric center of the corner is selected as the initial tool feed position. Subsequently, the tool path is globally optimized through ant colony dissemination and pheromone perception for path solution of multi-cavity milling. With the advantages of ant colony parallel search and pheromone positive feedback, the searching efficiency of the global shortest processing path is effectively improved. Finally, the milling programming of an aeronautical structural part is taken as a sample to verify the effectiveness of the proposed methodology. Compared with zigzag milling and genetic algorithm (GA)-based peripheral milling modes in the computer aided manufacturing (CAM) software, the results show that the ACO-based methodology can shorten the milling time of a sample part by more than 13%.


2012 ◽  
Vol 251 ◽  
pp. 169-172
Author(s):  
Fu Zhong Wu

Based on analyzing the existing algorithms, a novel tool path generation of 2D contour considering stock boundary is presented. Firstly the boundary points of stock are obtained by three-dimensional measuring machine. And the boundary curve is constructed by method of features identifying. The stock boundary is offset toward outside with tool diameter. An enclosed region is formed between the contour curves and the offset curves of stock boundary. The tool path is generated by form of parallel spiral by offsetting the stock boundary in the enclosed region. Finally the validity of present method is demonstrated by an example.


2012 ◽  
Vol 271-272 ◽  
pp. 493-497
Author(s):  
Wei Qing Wang ◽  
Huan Qin Wu

Abstract: In order to determine that the effect of geometric error to the machining accuracy is an important premise for the error compensation, a sensitivity analysis method of geometric error is presented based on multi-body system theory in this paper. An accuracy model of five-axis machine tool is established based on multi-body system theory, and with 37 geometric errors obtained through experimental verification, key error sources affecting the machining accuracy are finally identified by sensitivity analysis. The analysis result shows that the presented method can identify the important geometric errors having large influence on volumetric error of machine tool and is of help to improve the accuracy of machine tool economically.


2010 ◽  
Vol 166-167 ◽  
pp. 357-362
Author(s):  
Shahed Shojaeipour

In this article, a new method for rapid tool movement in CNC machines is presented. Firstly, a single digital camera, installed on the Z-axis, captures the image of the workpiece on the work table. Image processing techniques, implemented using MATLAB, are then used to convert the image into a binary black and white image. This allows the locations of protruding edge sections on the workpiece, which could impede tool movement, to be identified. Quadtree decomposition is then performed on the binary image, and possible paths from the tool current location to its target location are found. These paths are then analysed based on the tool diameter clearance and the distance to the goal, and the shortest path with sufficient tool clearance is selected. A Visual Basic program then converts the selected path into G-code commands that provides instructions to the CNC machine tool such that this path is followed. With this method, the workpiece fixture location would not have to be precise as the imaging system would be able to automatically identify the target location with respect to the tool current location, along with the optimal path to reach it.


2013 ◽  
Vol 347-350 ◽  
pp. 197-200
Author(s):  
Yu Gong ◽  
Jing Cai Zhang ◽  
Hong Qi Liu

In this paper, research on measurement methods of hole during the parts online detection has been made. Both diameter and position of the hole are going to be detected in the same measurement system. In order to obtain higher accuracy and efficiency, a comparative analysis test of using the contact probes, the inductive sensor, the laser sensor, the forward and back lighting CCD imaging have been achieved. Results show that the contact measurement using inductive sensor is more suitable for the system, for the reason that it has higher reliability and efficiency.


Sign in / Sign up

Export Citation Format

Share Document