Construction-Scale 3D Printing: Shape Stability of Fresh Printing Concrete

Author(s):  
Ali Kazemian ◽  
Xiao Yuan ◽  
Ryan Meier ◽  
Evan Cochran ◽  
Behrokh Khoshnevis

Building 3D objects in sequential layers is a technique employed by rapid manufacturing processes and allows great design freedom in manufacturing. Scaling up such automated additive fabrication from building small industrial parts to constructing buildings has been challenging for researchers during the recent years. Compared to the traditional construction methods, numerous advantages are offered by a well-developed layer based automated construction process, including architectural design freedom, lower construction cost, superior construction speed, and higher degree of customization. Concrete has been recognized as most viable option as the material to be used with such a process. However, there are several main challenges that yet have to be solved. Obtaining a mixture with high shape stability in the fresh state is among these challenges. Ideally, non-stop printing of successive layers is desired in building a structure, so the total construction time is minimized. In this paper, an experimental investigation of the shape stability of freshly printed concrete layers using a small-scale linear concrete printing setup with remote control capability is outlined. First, longer stoppage time between successive layers is examined to determine the effects on the deformations of fresh printing concrete. Then, heat application is proposed and studied as a measure to improve the shape stability of freshly printed concrete without adding any delay to the construction process. Furthermore, a one-story building is considered and the influence of each scenario on the total construction time is discussed.

2020 ◽  
Vol 10 (7) ◽  
pp. 2326
Author(s):  
Aisan Kong ◽  
Haibo Kang ◽  
Siyuan He ◽  
Na Li ◽  
Wei Wang

The construction industry is characterized by high energy consumption and high carbon emissions. With growing concern about climate change, environmental protection is becoming increasingly important. In this paper, the whole construction process of prefabricated floor slab (PFS) is divided into three stages: production, transportation, and construction stages. Carbon emissions are calculated based on the life cycle assessment (LCA) method. A case study of PFS construction in Shaoxing city, China, was examined, and the calculation results were compared and evaluated with the traditional construction methods, which showed that in the production stage, carbon emissions increased due to mechanical operations during the prefabrication process. In the transportation stage, carbon emissions also increased due to the heavier prefabricated components during the transportation process. During the on-site construction stage, carbon emissions considerably decreased due to the lower hoisting frequency and less on-site pouring.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Samireh Kadaei ◽  
Seyedeh Mahsa Shayesteh Sadeghian ◽  
Marziyeh Majidi ◽  
Qumars Asaee ◽  
Hassan Hosseini Mehr

Sustainable development and environment in the activities of the construction industry has attracted the attention of experts in most countries of the world. One of the obvious and problematic features of the construction industry of countries is the use of modern building materials using traditional construction methods. Changing the paradigm for sustainable buildings requires a change in the architectural design process. Today, smart buildings are buildings that are at a lower level in terms of energy consumption and operate in a dynamic and integrated environment, creating a perfect harmony between management, system, services, and structure. These qualities make plastics ideal products for construction and an essential component for a sustainable built environment. In the design of smart and sustainable buildings, the use of environmentally friendly materials increases the lifespan of the building and an effective step is taken towards the design of sustainable architecture. In this paper, we evaluate hotel construction based on sustainability issues with MCDM. The results show that alternative A4 is the best alternative in sustainable issues. With the increasing population and its concentration in large cities, the concern of energy supply and energy efficiency in buildings is one of the main concerns of urban planners, officials, and city residents. Construction projects mainly consume large amounts of materials and leave a huge amount of waste, and this problem sometimes includes existing buildings that cannot be demolished and need to be rebuilt and maintained.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Qingwen Li ◽  
Yuan Li ◽  
Gautam Dasgupta ◽  
Dongping Song ◽  
Lan Qiao ◽  
...  

The settlement control is critical for the safety of road based on high filled embankment. The traditional construction methods have the characteristic with less soil thickness compacted at a time. There are many advantages to compact the gravel soil with blasting. The cavity in soil is formed by blasting and its fillings to form a composite foundation for the embankment. The field data show this composite foundation can meet the requirement of loading and settlement control with less construction time. In geotechnical blasting, the high temperature due to blasting will swell the material around, so its worthy to do the coupled analysis with thermal mechanics (TM) and blasting compaction in the high filled embankment. In this paper, a 3D model is built with FLAC3D to simulate a single hole to predict the range and degree of thermal propagation. Then, the thermal strains got from the model are used to estimate the displacement of surrounding soil to predict the degree of compaction and optimize the distribution of blast holes in plan.


2014 ◽  
Vol 700 ◽  
pp. 734-738
Author(s):  
Yin Lin Ye ◽  
Wen Feng Bai

The sustainable construction of folk houses needs extremely the support of green vernacular architectural technology. Taking the after-quake reconstruction in Lushan of Sichuan province as an example, the bamboo structure, some new technologies like new adobe technology etc. are intending to be used in the folk houses recovery and reconstruction, in order to improve the earthquake-proof property of the local buildings and to improve the living environment of the local people. These technologies combine with the local traditional construction methods of local folk house construction will make the construction process more localizing, greenness and ecology, in order to realize the sustainable construction of folk house construction in the region.


2020 ◽  
Vol 22 ◽  
Author(s):  
Hana Cicevic ◽  
Sarah Gamble

This research focuses on the emergency-housing demand caused by the on-going refugee crisis in Southeastern Europe. The research and proposed solutions focus on Northern Serbia, as this region generally lacks permanent housing solutions for accommodating the increasing influx of immigrants. The outcome of this research is an architectural proposal for the refugee housing unit designed particularly for the situational factors of this focus region.    The study identifies earth architecture as the primary building technique, due to its ability to satisfy a range of defined end-product goals.  These goals include: the sustainability of the material, quality and durability of the final product, skill level required for non-professional construction, final cost of material and execution, historical regional precedent, and opportunity for communal engagement of the immigrant population. The proposed architectural design uses earth-bag construction as the sub-method most suitable for this location and in keeping with the goals outlined above. The proposed housing unit is a singular component that could be duplicated to create larger communal housing communities.  A broad overview of possible solutions is included, followed by the development of the earth-bag construction option. The development of this proposal includes material studies, sketches, and an architectural model as representation tools. The outcomes of this research serve as a guideline, rather than a precise construction model, in creating much needed refugee housing communities in North Serbia.      


2011 ◽  
Vol 243-249 ◽  
pp. 6339-6343
Author(s):  
Guang Bin Wang ◽  
Gui You He ◽  
Li Bian

Due to the great negative impact, the construction industry needs to undergo a paradigm shift from traditional construction to sustainable construction. To reach the goal of sustainable development, the construction industry needs to intensify its efforts to move to a knowledge intensive mode. Based on the analysis of e-Cognos and the concept of ontology, this paper proposes that e-Cognos ontology can be applied in the development of sustainable construction process ontology, which is a key part of knowledge management system (KMS). Following this, the application process of ontology-based KMS is analyzed using IDEF0 modeling method. Finally, this paper analyzes interorganizational collaboration model in sustainable project.


2020 ◽  
Vol 70 (4) ◽  
pp. 428-438
Author(s):  
Sigong Zhang ◽  
Ying Hei Chui ◽  
David Joo

Abstract Panelized light wood frame construction is becoming more popular due to the faster construction time and shortage of onsite skilled labor. To use light wood frame panels effectively in panelized floor systems, panel-to-panel joints must be fastened adequately to allow load transfer between panels. They must also possess in-plane shear strength and stiffness comparable to stick-built, staggered-sheathed assemblies. This study was designed to develop efficient and effective panel-to-panel joints for connecting adjacent floor panels built with wood I-joists and evaluate the efficiency of the joints in achieving diaphragm action. At first, a number of these panel-to-panel joints were tested in the laboratory using a small-scale diaphragm test setup to determine their efficiency in transferring in-plane forces between panels. Test results showed that a small decrease in in-plane stiffness was expected for the most effective joints, but their strengths were significantly higher than at the same location in a conventional site-built floor diaphragm. The presence of blockings and use of two-row nailing were found to considerably improve stiffness and strength. These features can be used to mitigate the potential reduction in mechanical performance of panelized floor construction, in comparison with the site-built wood I-joist floor.


Author(s):  
Simon Hoffmann ◽  
Amit Kutumbale ◽  
Danilo Della Ca'

<p>A bridge’s bearings, arguably its most critical components, perform a vital function throughout the bridge’s service life, but the bearings used can also have a significant impact on the bridge construction process. Suitably designed adjustable bearings are an integral part of the incremental launch method of bridge construction, for instance, which can be a very efficient construction method. Adjustable bearings may also support other bridge construction methods, such as segmental bridge construction, where fixities/freedoms that applied during the construction phase require to be changed before the bridge enters service. Lifting bearings, the height of which can be increased, may enable a lack of precision in the structure to be tolerated, and measuring bearings may enable load distribution during bridge construction to be verified, where this is required by the construction method. Design features of otherwise standard bearings that support quick and high-quality installation can also contribute towards the efficiency of the overall bridge construction process, as can the use of bearing designs which minimize bearing size. Bearing solutions and features that facilitate bearing installation and bridge construction in ways such as these are described.</p>


2011 ◽  
Vol 368-373 ◽  
pp. 2319-2326
Author(s):  
Yan Lin Guo ◽  
Guang Yu Tian ◽  
Xiao An Wang ◽  
Guo Dong Chen ◽  
Feng Fan

This paper presents Integrated Cooperative Time-variation System (ICTS) and its application for constructional process of complex steel structures. ICTS is based on integrated model comprised of structures, boundary conditions, loads, material properties, construction facilities, where all those are supposed to be time-variation associated with a complex construction process. ICTS can deal with mainly time-variation analysis of construction processes, including pre-set deforming, integrated lifting, temporary support removal, rotation pulling, sliding and tensioning. Besides, several key control technologies of structural force and configuration during structure construction process are introduced, such as obtaining error criteria of cable’s length in tensile structures, controlling influence of constructional environmental temperature, estimating differences between internal and external tubes’ vertical deformation of skyscrapers due to shrinkage and creep of concrete of internal tube, evaluating residual internal force of complex welding structures. ICTS and these key control technologies reinforce traditional construction analysis by keeping continuity of constructional process and simulating interaction of different parts in integrated model precisely, and reach to a design-required structural state accurately after finishing constructional process.


2021 ◽  
Vol 24 (1) ◽  
pp. 48-54
Author(s):  
Ivan Beloev ◽  
Diyana Kinaneva ◽  
Georgi Georgiev ◽  
Georgi Hristov ◽  
Plamen Zahariev

AbstractIn the recent years, robotic systems became more advanced and more accessible. This has led to their slow, but stable integration and use in different processes and applications, including in the agricultural domain. Nowadays, agricultural robots are developed with the aim to replace the human labour in the otherwise exhausting, time-consuming or dangerous activities. Agricultural robotic systems provide many advantages, which can differ based on the type of the robot and its sensors, actuators and communication systems. This paper presents the design, the construction process, the main characteristics and the evaluation of a prototype of a small-scale agricultural robot that can be used for some of the simplest activities in agricultural enterprises. The robot is designed as an end-user autonomous mobile system, which is capable of self-localization and can map or inspect a specific farming area. The decision-making capabilities of the robot are based on artificial intelligence (AI) algorithms, which allow it to perform specific actions in accordance to the situation and the surrounding environment. The presented prototype is in its early development and evaluation stages and the paper concludes with discussions on the possible further improvements of the platform.


Sign in / Sign up

Export Citation Format

Share Document