Top-Down Processing Towards Ångström-Thin Two-Dimensional (2D) Elemental Metals

Author(s):  
Md Rubayat-E Tanjil ◽  
Stanley Agbakansi ◽  
Keegan Phayden Suero ◽  
Ossie Douglas ◽  
Yunjo Jeong ◽  
...  

Abstract Two-dimensional (2D) materials have recently garnered significant interest due to their novel and emergent properties. A plethora of 2D materials have been discovered and intensively studied, such as graphene, hexagonal boron nitride, transitionmetal dichalcogenides (TMDCs), and other metallic compound MXenes (nitrides, phosphides, and hydroxides), as well as elemental 2D materials (borophene, germanene, phosphorene, silicene, etc.). Considering the widespread interest in conventional van der Waals 2D materials, two-dimensional metallic nanosheets (2DMNS), a recent addition to the 2D materials family, have exhibited diverse potential spanning optics, electronics, magnetics, catalysis, etc. However, the close-packed, non-layered structure and non-directional, isotropic bonding of metallic materials make it difficult to access metals in their 2D forms, unlike 2D van der Waals materials, which have intrinsically layered structure (strong in-plane bonding in addition to the weak interlayer interaction). Until now, conventional top-down and bottom-up synthesis schemes of these 2DMNS have encountered various limitations such as precursor availability, substrate incompatibility, difficulty of control over thickness and stoichiometry, limited thermal budget, etc. To overcome these manufacturing limitations of 2DMNS, here we report a facile, rapid, large-scale, and cost-effective fabrication technique of nanometer-scale copper (Cu) 2DMNS via iterative rolling, folding, and calendering (RFC) that is readily generalizable to other conventional elemental metallic materials. Overall, we successfully show a scalable fabrication technique of 2DMNS.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Arne Quellmalz ◽  
Xiaojing Wang ◽  
Simon Sawallich ◽  
Burkay Uzlu ◽  
Martin Otto ◽  
...  

AbstractIntegrating two-dimensional (2D) materials into semiconductor manufacturing lines is essential to exploit their material properties in a wide range of application areas. However, current approaches are not compatible with high-volume manufacturing on wafer level. Here, we report a generic methodology for large-area integration of 2D materials by adhesive wafer bonding. Our approach avoids manual handling and uses equipment, processes, and materials that are readily available in large-scale semiconductor manufacturing lines. We demonstrate the transfer of CVD graphene from copper foils (100-mm diameter) and molybdenum disulfide (MoS2) from SiO2/Si chips (centimeter-sized) to silicon wafers (100-mm diameter). Furthermore, we stack graphene with CVD hexagonal boron nitride and MoS2 layers to heterostructures, and fabricate encapsulated field-effect graphene devices, with high carrier mobilities of up to $$4520\;{\mathrm{cm}}^2{\mathrm{V}}^{ - 1}{\mathrm{s}}^{ - 1}$$ 4520 cm 2 V − 1 s − 1 . Thus, our approach is suited for backend of the line integration of 2D materials on top of integrated circuits, with potential to accelerate progress in electronics, photonics, and sensing.


2020 ◽  
Vol 6 (49) ◽  
pp. eabd3655
Author(s):  
Yaping Yang ◽  
Jidong Li ◽  
Jun Yin ◽  
Shuigang Xu ◽  
Ciaran Mullan ◽  
...  

In van der Waals heterostructures, electronic bands of two-dimensional (2D) materials, their nontrivial topology, and electron-electron interactions can be markedly changed by a moiré pattern induced by twist angles between different layers. This process is referred to as twistronics, where the tuning of twist angle can be realized through mechanical manipulation of 2D materials. Here, we demonstrate an experimental technique that can achieve in situ dynamical rotation and manipulation of 2D materials in van der Waals heterostructures. Using this technique, we fabricated heterostructures where graphene is perfectly aligned with both top and bottom encapsulating layers of hexagonal boron nitride. Our technique enables twisted 2D material systems in one single stack with dynamically tunable optical, mechanical, and electronic properties.


Author(s):  
Xiaoqiu Guo ◽  
Ruixin Yu ◽  
Jingwen Jiang ◽  
Zhuang Ma ◽  
Xiuwen Zhang

Topological insulation is widely predicted in two-dimensional (2D) materials realized by epitaxial growth or van der Waals (vdW) exfoliation. Such 2D topological insulators (TI’s) host many interesting physical properties such...


2021 ◽  
Author(s):  
Pin Tian ◽  
Hongbo Wu ◽  
Libin Tang ◽  
Jinzhong Xiang ◽  
Rongbin Ji ◽  
...  

Abstract Two-dimensional (2D) materials exhibit many unique optical and electronic properties that are highly desirable for application in optoelectronics. Here, we report the study of photodetector based on 2D Bi2O2Te grown on n-Si substrate. The 2D Bi2O2Te material was transformed from sputtered Bi2Te3 ultrathin film after rapid annealing at 400 ℃ for 10 min in air atmosphere. The photodetector was capable of detecting a broad wavelength from 210 nm to 2.4 μm with excellent responsivity of up to 3x105 and 2x104 AW-1, and detectivity of 4x1015 and 2x1014 Jones at deep ultraviolet (UV) and short-wave infrared (SWIR) under weak light illumination, respectively. The effectiveness of 2D materials in weak light detection was investigated by analysis of the photocurrent density contribution. Importantly, the facile growth process with low annealing temperature would allow direct large-scale integration of the 2D Bi2O2Te materials with complementary metal-oxide–semiconductor (CMOS) technology.


2020 ◽  
Vol 6 (22) ◽  
pp. eaba6714 ◽  
Author(s):  
Shiqiang Zhao ◽  
Qingqing Wu ◽  
Jiuchan Pi ◽  
Junyang Liu ◽  
Jueting Zheng ◽  
...  

Two-dimensional van der Waals heterojunctions (2D-vdWHs) stacked from atomically thick 2D materials are predicted to be a diverse class of electronic materials with unique electronic properties. These properties can be further tuned by sandwiching monolayers of planar organic molecules between 2D materials to form molecular 2D-vdWHs (M-2D-vdWHs), in which electricity flows in a cross-plane way from one 2D layer to the other via a single molecular layer. Using a newly developed cross-plane break junction technique, combined with density functional theory calculations, we show that M-2D-vdWHs can be created and that cross-plane charge transport can be tuned by incorporating guest molecules. The M-2D-vdWHs exhibit distinct cross-plane charge transport signatures, which differ from those of molecules undergoing in-plane charge transport.


Author(s):  
Hongcheng Ruan ◽  
Yu Huang ◽  
Yuqian Chen ◽  
Fuwei Zhuge

Two-dimensional (2D) materials are attracting explosive attention for their intriguing potential in versatile applications, covering optoelectronics, electronics, sensors, etc. An attractive merit of 2D materials is their viable van der Waals (VdW) stacking in artificial sequence, thus forming different atomic arrangements in vertical direction and enabling unprecedented tailoring of material properties and device application. In this chapter, we summarize the latest progress in assembling VdW heterostructures for optoelectronic applications by beginning with the basic pick-transfer method for assembling 2D materials and then discussing the different combination of 2D materials of semiconductor, conductor, and insulator properties for various optoelectronic devices, e.g., photodiode, phototransistors, optical memories, etc.


2019 ◽  
Vol 21 (39) ◽  
pp. 22140-22148 ◽  
Author(s):  
Tuan V. Vu ◽  
Nguyen V. Hieu ◽  
Le T. P. Thao ◽  
Nguyen N. Hieu ◽  
Huynh V. Phuc ◽  
...  

van der Waals heterostructures by stacking different two-dimensional materials are being considered as potential materials for nanoelectronic and optoelectronic devices because they can show the most potential advantages of individual 2D materials.


RSC Advances ◽  
2016 ◽  
Vol 6 (108) ◽  
pp. 107114-107126 ◽  
Author(s):  
M. Kamaraj ◽  
J. Vijaya Sundar ◽  
V. Subramanian

The changes in the electronic properties of single and bilayers of graphene and hexagonal boron nitride two dimensional sheets have been investigated upon interaction with 2,3,7,8-tetrachlorodibenzo-p-dioxin by employing the DFT calculations.


2021 ◽  
Author(s):  
Muhammad Aamir Iqbal ◽  
Maria Malik ◽  
Wajeehah Shahid ◽  
Waqas Ahmad ◽  
Kossi A. A. Min-Dianey ◽  
...  

Plasmonics is a technologically advanced term in condensed matter physics that describes surface plasmon resonance where surface plasmons are collective electron oscillations confined at the dielectric-metal interface and these collective excitations exhibit profound plasmonic properties in conjunction with light interaction. Surface plasmons are based on nanomaterials and their structures; therefore, semiconductors, metals, and two-dimensional (2D) nanomaterials exhibit distinct plasmonic effects due to unique confinements. Recent technical breakthroughs in characterization and material manufacturing of two-dimensional ultra-thin materials have piqued the interest of the materials industry because of their extraordinary plasmonic enhanced characteristics. The 2D plasmonic materials have great potential for photonic and optoelectronic device applications owing to their ultra-thin and strong light-emission characteristics, such as; photovoltaics, transparent electrodes, and photodetectors. Also, the light-driven reactions of 2D plasmonic materials are environmentally benign and climate-friendly for future energy generations which makes them extremely appealing for energy applications. This chapter is aimed to cover recent advances in plasmonic 2D materials (graphene, graphene oxides, hexagonal boron nitride, pnictogens, MXenes, metal oxides, and non-metals) as well as their potential for applied applications, and is divided into several sections to elaborate recent theoretical and experimental developments along with potential in photonics and energy storage industries.


Sign in / Sign up

Export Citation Format

Share Document