Numerical Simulation of Oscillatory Flow Around Two Circular Cylinders of Different Diameters

Author(s):  
Hongwei An ◽  
Liang Cheng ◽  
Ming Zhao ◽  
Guohai Dong

A detailed study of oscillatory flow around two circular cylinders of different diameters is carried out numerically. The Reynolds-averaged Navier-Stokes equations are solved using a finite element method (FEM) with a k–ω turbulence closure. The numerical model is validated against oscillatory flows past a single circular cylinder where the experimental data are available in literature. Then it is employed to simulate the flow around two circular cylinders. It’s found that the fluid flow field around two cylinders is different from the single cylinder case, especially when the small cylinder diameter increases. The orientation of the small cylinder and the gap between two cylinders have significant effects on the vortex shedding process and force coefficients on the cylinders.

Author(s):  
Ming-ming Liu ◽  
Rui-jia Jin ◽  
Guo-qiang Tang ◽  
Cheng-yong Li

Vortex-induced vibration of two tandem circular cylinders with different diameters under low Reynolds number (Re = 200) is investigated numerically by solving the uncompressible two-dimensional Navier–Stokes equations. The arbitrary Lagrange–Euler method is used to simulate the movement of mesh. Effects of diameters and gap ratios are considered. Numerical results show that diameter ratios and gap ratios have little effect on maximum vibration amplitude. Four different vortex shedding modes are detected in this study.


Author(s):  
Mehran Rahmanian ◽  
Liang Cheng ◽  
Ming Zhao ◽  
Tongming Zhou

Vortex-induced vibrations of two side-by-side cylinders of different diameters in steady incompressible flow are studied. The diameter ratio of cylinders is fixed at 0.1. The Reynolds number is fixed at 5000 based on the large cylinder diameter and free stream velocity. A Petrov-Galerkin finite element method is used to solve the two dimensional Reynolds-averaged Navier Stokes equations using the Arbitrary Lagrangian Eulerian scheme with a SST k-ω turbulence model closure. The numerical method has been validated against available experimental results. Then, the effects of natural frequencies of the cylinders on the vibration amplitude and vortex shedding regimes are investigated. It is found that for the range of considered parameters, collision of the cylinders is dependent on the difference of the natural frequencies of the cylinders.


Author(s):  
V. Tamimi ◽  
M. Zeinoddini ◽  
A. Bakhtiari ◽  
M. Golestani

In this paper results from simulating the vortex shedding phenomena behind a fixed tapered circular cylinder, at relatively high Reynolds numbers, are reported. Ansys-CFX computational fluid dynamics model, based on solving three-dimensional (3D) incompressible transient Navier Stokes equations, is employed for this purpose. The geometries applied in the models resemble those used in wind tunnel experiments by other researchers. The taper slope along the cylinder span is uniform with a tangent of 24:1. The diameter at mid-span of the cylinder equals to 0.0389 m. The Reynolds number (based on the mid-span diameter) is around 29,000. The computational model has first been calibrated against experiments for uniform 3D cylinders as well as results from a Direct Numerical Simulation of turbulent wake with vortex shedding past a uniform circular cylinder, as obtained by other researchers. The main flow characteristics for tapered cylinders such as vortex dislocations and splitting, cellular vortex shedding, oblique vortex shedding and the variation of the vorticity patterns along the tapered cylinder could be obtained from the simulations.


Author(s):  
B. Elie ◽  
G. Reliquet ◽  
P.-E. Guillerm ◽  
O. Thilleul ◽  
P. Ferrant ◽  
...  

This paper compares numerical and experimental results in the study of the resonance phenomenon which appears between two side-by-side fixed barges for different sea-states. Simulations were performed using SWENSE (Spectral Wave Explicit Navier-Stokes Equations) approach and results are compared with experimental data on two fixed barges with different headings and bilges. Numerical results, obtained using the SWENSE approach, are able to predict both the frequency and the magnitude of the RAO functions.


1998 ◽  
Vol 14 (3) ◽  
pp. 153-159 ◽  
Author(s):  
Chou-Jiu Tsai ◽  
Ger-Jyh Chen

ABSTRACTIn this study, fluid flow around bluff bodies are studied to examine the vortex shedding phenomenon in conjuction with the geometrical shapes of these vortex shedders. These flow phenomena are numerically simulated. A finite volume method is employed to solve the incompressible two-dimensional Navier-Stokes equations. Thus, quantitative descriptions of the vortex shedding phenomenon in the near wake were made, which lead to a detailed description of the vortex shedding mechanism. Streamline contours, figures of lift coefficent, and figures of drag coefficent in various time, are presented, respectively, for a physical description.


1994 ◽  
Vol 271 ◽  
pp. 1-16 ◽  
Author(s):  
Peter Y. Huang ◽  
Jimmy Feng ◽  
Daniel D. Joseph

We do a direct two-dimensional finite-elment simulation of the Navier–Stokes equations and compute the forces which turn an ellipse settling in a vertical channel of viscous fluid in a regime in which the ellipse oscillates under the action of vortex shedding. Turning this way and that is induced by large and unequal values of negative pressure at the rear separation points which are here identified with the two points on the back face where the shear stress vanishes. The main restoring mechanism which turns the broadside of the ellipse perpendicular to the fall is the high pressure at the ‘stagnation point’ on the front face, as in potential flow, which is here identified with the one point on the front face where the shear stress vanishes.


2020 ◽  
Vol 8 (6) ◽  
pp. 419 ◽  
Author(s):  
Yun-Ta Wu ◽  
Shih-Chun Hsiao

In this article, the interaction of solitary waves and a submerged slotted barrier is investigated in which the slotted barrier consists of three impermeable elements and its porosity can be determined by the distance between the two neighboring elements. A new experiment is conducted to measure free surface elevation, velocity, and turbulent kinetic energy. Numerical simulation is performed using a two-dimensional model based on the Reynolds-Averaged Navier-Stokes equations and the non-linear k-ɛ turbulence model. A detailed flow pattern is illustrated by a flow visualization technique. A laboratory observation indicates that flow separations occur at each element of the slotted barrier and the vortex shedding process is then triggered due to the complicated interaction of those induced vortices that further create a complex flow pattern. During the vortex shedding process, seeding particles that are initially accumulated near the seafloor are suspended by an upward jet formed by vortices interacting. Model-data comparisons are carried out to examine the accuracy of the model. Overall model-data comparisons are in satisfactory agreement, but modeled results sometimes fail to predict the positions of the induced vortices. Since the measured data is unique in terms of velocity and turbulence, the dataset can be used for further improvement of numerical modeling.


Author(s):  
Bakhtier Farouk ◽  
Murat K. Aktas

Formation of vortical flow structures in a rectangular enclosure due to acoustic streaming is investigated numerically. The oscillatory flow field in the enclosure is created by the vibration of a vertical side wall of the enclosure. The frequency of the wall vibration is chosen such that a standing wave forms in the enclosure. The interaction of this standing wave with the horizontal solid walls leads to the production of Rayleigh type acoustic streaming flow patterns in the enclosure. All four walls of the enclosure considered are thermally insulated. The fully compressible form of the Navier-Stokes equations is considered and an explicit time-marching algorithm is used to explicitly track the acoustic waves. Numerical solutions are obtained by employing a highly accurate flux corrected transport (FCT) algorithm for the convection terms. A time-splitting technique is used to couple the viscous and diffusion terms of the full Navier-Stokes equations. Non-uniform grid structure is employed in the computations. The simulation of the primary oscillatory flow and the secondary (steady) streaming flows in the enclosure is performed. Streaming flow patterns are obtained by time averaging the primary oscillatory flow velocity distributions. The effect of the amount of wall displacement on the formation of the oscillatory flow field and the streaming structures are studied. Computations indicate that the nonlinearity of the acoustic field increases with increasing amount of the vibration amplitude. The form and the strength of the secondary flow associated with the oscillatory flow field and viscous effects are found to be strongly correlated to the maximum displacement of the vibrating wall. Total number of acoustic streaming cells per wavelength is also determined by the strength and the level of the nonlinearity of the sound field in the resonator.


2014 ◽  
Vol 136 (6) ◽  
Author(s):  
B. A. Younis ◽  
A. Abrishamchi

The paper reports on the prediction of the turbulent flow field around a three-dimensional, surface mounted, square-sectioned cylinder at Reynolds numbers in the range 104–105. The effects of turbulence are accounted for in two different ways: by performing large-eddy simulations (LES) with a Smagorinsky model for the subgrid-scale motions and by solving the unsteady form of the Reynolds-averaged Navier–Stokes equations (URANS) together with a turbulence model to determine the resulting Reynolds stresses. The turbulence model used is a two-equation, eddy-viscosity closure that incorporates a term designed to account for the interactions between the organized mean-flow periodicity and the random turbulent motions. Comparisons with experimental data show that the two approaches yield results that are generally comparable and in good accord with the experimental data. The main conclusion of this work is that the URANS approach, which is considerably less demanding in terms of computer resources than LES, can reliably be used for the prediction of unsteady separated flows provided that the effects of organized mean-flow unsteadiness on the turbulence are properly accounted for in the turbulence model.


Sign in / Sign up

Export Citation Format

Share Document