VIV Force Identification Using Classical Optimal Control Algorithm

Author(s):  
Jie Wu ◽  
Philippe Mainc¸on ◽  
Carl M. Larsen ◽  
Halvor Lie

Due to the difficulty of direct force measurements in vortex induced vibration (VIV) experiments with long elastic cylinders, accelerometer and bending strain measurement are available. Still, obtaining information on the force is of great interest to researchers. The work presented in this paper follows the same principle as Mainc¸on (2004), who estimated external forces acting on a riser subjected to VIV from measured response by using a classical optimal tracking algorithm. The objective of this study is to first present a method for extracting VIV forces from measured data with long elastic riser models subjected to current. The second objective is to extract first order (primary) cross-flow force coefficients by a combined use of modal filtering. The algorithm minimizes the sum of the squares of the discrepancies between measured and predicted response plus a constant times the sum of squares of the external forces, while satisfying the system’s dynamic equilibrium equation. FEM discretization of the riser with Euler beam elements leads to a stiffness and mass matrix. The dimension of these matrixes is reduced by eliminating the rotation degree of freedom using master-slave condensation, which greatly facilitates the matrix iteration. Displacement is used in this study as input to the algorithm to identify forces. The method is verified against synthetic measurement data. The results showed the algorithm’s capability to accurately estimate the input forces from noisy measurement data. The method is applied to the data from a rotating rig test to identify hydrodynamic forces in primary cross-flow vortex shedding frequency range. The emphasis is on extracting force coefficient database. One important finding is that the high mode component of the force contributed little to the response, while it resulted in complication of the coefficient data base. Therefore, they are neglected by filtering the measurement with modal analysis before the use of inverse force estimation. The excitation and added mass coefficients are calculated and their contour plots are generated. Comparisons with existing data are investigated.

Author(s):  
M. Häfele ◽  
J. Starzmann ◽  
M. Grübel ◽  
M. Schatz ◽  
D. M. Vogt ◽  
...  

A numerical study on the flow in a three stage low pressure industrial steam turbine with conical friction bolts in the last stage and lacing wires in the penultimate stage is presented and analyzed. Structured high-resolution hexahedral meshes are used for all three stages and the meshing methodology is shown for the rotor with friction bolts and blade reinforcements. Modern three-dimensional CFD with a non-equilibrium wet steam model is used to examine the aero-thermodynamic effects of the part-span connectors. A performance assessment of the coupled blades at part load, design and overload condition is presented and compared with measurement data from an industrial steam turbine test rig. Detailed flow field analyses and a comparison of blade loading between configurations with and without part-span connectors are presented in this paper. The results show significant interaction of the cross flow vortex along the part-span connector with the blade passage flow causing aerodynamic losses. This is the first time that part-span connectors are being analyzed using a non-equilibrium wet steam model. It is shown that additional wetness losses are induced by these elements.


Author(s):  
Philippe Mainc¸on ◽  
Celeste Barnardo ◽  
Carl M. Larsen

An inverse finite element method (iFEM) is presented for the estimation of load and response of linear dynamic structures, based on measurement data. It produces load and response estimates which exactly verify dynamic equilibrium while the loads are reasonably small and the response in reasonable agreement with the measurements. iFEM is used to process measurement data from VIV experiments on a reduced scale riser model in shear current. The technique allows to visualise the distribution and history of hydrodynamic forces and excitation and damping zones.


2015 ◽  
Vol 782 ◽  
pp. 300-332 ◽  
Author(s):  
Fangfang Xie ◽  
Yue Yu ◽  
Yiannis Constantinides ◽  
Michael S. Triantafyllou ◽  
George Em Karniadakis

We employ three-dimensional direct and large-eddy numerical simulations of the vibrations and flow past cylinders fitted with free-to-rotate U-shaped fairings placed in a cross-flow at Reynolds number $100\leqslant \mathit{Re}\leqslant 10\,000$. Such fairings are nearly neutrally buoyant devices fitted along the axis of long circular risers to suppress vortex-induced vibrations (VIVs). We consider three different geometric configurations: a homogeneous fairing, and two configurations (denoted A and AB) involving a gap between adjacent segments. For the latter two cases, we investigate the effect of the gap on the hydrodynamic force coefficients and the translational and rotational motions of the system. For all configurations, as the Reynolds number increases beyond 500, both the lift and drag coefficients decrease. Compared to a plain cylinder, a homogeneous fairing system (no gaps) can help reduce the drag force coefficient by 15 % for reduced velocity $U^{\ast }=4.65$, while a type A gap system can reduce the drag force coefficient by almost 50 % for reduced velocity $U^{\ast }=3.5,4.65,6$, and, correspondingly, the vibration response of the combined system, as well as the fairing rotation amplitude, are substantially reduced. For a homogeneous fairing, the cross-flow amplitude is reduced by about 80 %, whereas for fairings with a gap longer than half a cylinder diameter, VIVs are completely eliminated, resulting in additional reduction in the drag coefficient. We have related such VIV suppression or elimination to the features of the wake flow structure. We find that a gap causes the generation of strong streamwise vorticity in the gap region that interferes destructively with the vorticity generated by the fairings, hence disorganizing the formation of coherent spanwise cortical patterns. We provide visualization of the incoherent wake flow that leads to total elimination of the vibration and rotation of the fairing–cylinder system. Finally, we investigate the effect of the friction coefficient between cylinder and fairing. The effect overall is small, even when the friction coefficients of adjacent segments are different. In some cases the equilibrium positions of the fairings are rotated by a small angle on either side of the centreline, in a symmetry-breaking bifurcation, which depends strongly on Reynolds number.


Author(s):  
Collin Gaskill ◽  
Jie Wu ◽  
Decao Yin

A newly developed Tri-Helically Grooved drilling riser buoyancy module design was tested in the towing tank of SINTEF Ocean in June 2017. This new design aims to reduce riser drag loading and suppress vortex-induced vibrations (VIV). Objectives of the test program were two-fold: to assess the hydrodynamic performance of the design allowing for validation of previous computational fluid dynamics (CFD) studies through empirical measurements, and, to develop a hydrodynamic force coefficient database to be used in numerical simulations to evaluate drilling riser deformation due to drag loading and fatigue lives when subjected to VIV. This paper provides the parameters of the testing program and a discussion of the results from the various testing configurations assessed. Tests were performed using large scale, rigid cylinder test models at Reynolds numbers in the super-critical flow regime, defined as starting at a Reynolds number of Re = 3.5 × 105 – 5.0 × 105 (depending on various literatures) and continuing until Re = 3 × 106. Towing tests, with fixed and freely oscillating test models, were completed with both a bare test cylinder and a test cylinder with the Tri-Helical Groove design. Additional forced motion tests were performed on the helically grooved model to calculate lift and added mass coefficients at various amplitudes and frequencies of oscillation for the generation of a hydrodynamic force coefficient database for VIV prediction software. Significant differences were observed in the hydrodynamic performance of the bare and helically grooved test models considering both in-line (IL) drag and cross-flow (CF) cylinder excitation and oscillation amplitude. For the helically grooved model, measured static drag shows a strong independence from Reynolds number and elimination of the drag crisis region with an average drag coefficient of 0.63. Effective elimination of VIV and subsequent drag amplification was observed at relatively higher reduced velocities, where the bare test model shows a significant dynamic response. A small level of expected response for the helically grooved model was seen across the lower range of reduced velocities. However, disruption of vortex correlation still occurs in this range and non-sinusoidal and highly amplitude-modulated responses were observed.


1998 ◽  
Vol 368 ◽  
pp. 339-357 ◽  
Author(s):  
MARKUS HÖGBERG ◽  
DAN HENNINGSON

Linear eigenvalue calculations and spatial direct numerical simulations (DNS) of disturbance growth in Falkner–Skan–Cooke (FSC) boundary layers have been performed. The growth rates of the small-amplitude disturbances obtained from the DNS calculations show differences compared to linear local theory, i.e. non-parallel effects are present. With higher amplitude initial disturbances in the DNS calculations, saturated cross-flow vortices are obtained. In these vortices strong shear layers appear. When a small random disturbance is added to a saturated cross-flow vortex, a low-frequency mode is found located at the bottom shear layer of the cross-flow vortex and a high-frequency secondary instability is found at the upper shear layer of the cross-flow vortex. The growth rates of the secondary instabilities are found from detailed analysis of simulations of single-frequency disturbances. The low-frequency disturbance is amplified throughout the domain, but with a lower growth rate than the high-frequency disturbance, which is amplified only once the cross-flow vortices have started to saturate. The high-frequency disturbance has a growth rate that is considerably higher than the growth rates for the primary instabilities, and it is conjectured that the onset of the high-frequency instability is well correlated with the start of transition.


1983 ◽  
Vol 105 (1) ◽  
pp. 59-66 ◽  
Author(s):  
S. J. Price ◽  
M. P. Paidoussis

This paper represents the first stage of a fundamental investigation of the vibration phenomena induced in heat exchanger bundles subject to a cross-flow. Using aerodynamic force coefficient data, obtained experimentally from a static wind tunnel model, a linearized quasi-static analysis is employed to analyze the stability of an infinite double row of circular cylinders in uniform cross-flow. From the analysis it is shown that the instability is a result of the negative fluid damping forces, resulting from the complex flow pattern in the row. A new expression is obtained relating the critical velocity for the onset of instability to the damping parameter, the mass parameter and the pitch ratio of the cylinders. The expression is compared with experimental data available in the literature, from dynamic laboratory results, and a good correlation is obtained. Using this stability analysis the effect of mechanical coupling and frequency detuning, both between modes in one cylinder and modes in adjacent cylinders, is examined. In general it is shown that mechanical coupling is destabilizing and frequency detuning stabilizing.


2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Jie Wu ◽  
Decao Yin ◽  
Elizabeth Passano ◽  
Halvor Lie ◽  
Ralf Peek ◽  
...  

Abstract Helical strakes can suppress vortex-induced vibrations (VIVs) in pipelines spans and risers. Pure in-line (IL) VIV is more of a concern for pipelines than for risers. To make it possible to assess the effectiveness of partial strake coverage for this case, an important gap in the hydrodynamic data for strakes is filled by the reported IL forced-vibration tests. Therein, a strake-covered rigid cylinder undergoes harmonic purely IL motion while subject to a uniform “flow” created by towing the test rig along SINTEF Ocean's towing tank. These tests cover a range of frequencies, and amplitudes of the harmonic motion to generate added-mass and excitation functions are derived from the in-phase and 90 deg out-of-phase components of the hydrodynamic force on the pipe, respectively. Using these excitation- and added-mass functions in VIVANA together with those from experiments on bare pipe by Aronsen (2007 “An Experimental Investigation of In-Line and Combined In-Line and Cross-Flow Vortex Induced Vibrations,” Ph.D. thesis, Norwegian University of Science and Technology, Trondheim, Norway.), the IL VIV response of partially strake-covered pipeline spans is calculated. It is found that as little as 10% strake coverage at the optimal location effectively suppresses pure IL VIV.


2019 ◽  
Vol 108 ◽  
pp. 01009 ◽  
Author(s):  
Stanisław Łopata ◽  
Paweł Ocłoń ◽  
Tomasz Stelmach

In heat exchangers, especially those with the cross-flow arrangement, it is nearly impossible to achieve the uniform distribution of the working fluid in the tubular space with the currently used inlet and outlet chambers (in some constructions as well). The improper inflow conditions to individual tubes, including those with an elliptical cross-section - often used because of their favorable features compared to round tubes, is the cause of improper heat transfer. In this respect, transitional flow is of particular importance. This flow regime is complex and challenging to model. Therefore, it is necessary to perform experimental verification. For this purpose, an appropriate stand was built, allowing to investigate the flow of the working fluid (water) to the elliptical tubes in the cross-current heat exchanger. The paper presents the results of measurements for manifold geometry, which are currently used in practice (for heat exchanger constructions). The analysis of the measurement data confirms the nonuniform flow distribution to individual tubes of the heat exchanger.


Sign in / Sign up

Export Citation Format

Share Document