Effects of Coupled Hydrodynamic in the Performance of a DP Barge Operating Close to a FPSO

Author(s):  
Daniel P. Vieira ◽  
Edgard B. Malta ◽  
Fabiano P. Rampazzo ◽  
Joa˜o Luis B. Silva ◽  
Eduardo A. Tannuri

In ocean systems composed by two or more closing floating bodies, coupled hydrodynamics effects must be considered. Dynamic positioned systems (DP), for example, need an accurate determination of environmental forces to guarantee a safe operation. This work presents a numerical methodology, using the WAMIT code, to evaluate both first order motions and mean drift forces of a system composed by a DP Crane Barge operating close to a turret-moored FPSO. The first order wave forces were evaluated using the code standard method. The second order forces (or mean drift forces) were obtained using the alternative control surface method. The work discussions are centered on the effects of FPSO presence on DP Barge hydrodynamics. Two relative positions between vessels were evaluated as well as three FPSO drafts (full, intermediate and ballasted). The effects of wave incidence angle were also discussed.

1959 ◽  
Vol 32 (1) ◽  
pp. 139-149 ◽  
Author(s):  
Walter Scheele ◽  
Adolf Franck

Abstract The present paper deals with the results of an orientating, quantitative investigation of sulfur vulcanization accelerated by thiuram disulfide, with tetramethylthiuram disulfide as the representative example. It was found: In the sulfur cure of natural rubber with tetramethylthiuram disulfide at different TMTD:S ratios, the rates of TMTD decrease and dithiocarbamate formation increase with increasing sulfur concentration, the TMTD content being kept constant. The rates practically do not change any further when the compounds contain 6 gram atoms of sulfur per mole of thiuram disulfide. The peak value of dithiocarbamate formation increases with the increase of sulfur concentration and reaches a constant end value of about 90 mole per cent based on the amount of original thiuram disulfide, when the stocks contain 4 gram atoms of sulfur per mole thiuram disulfide. This end value is identical to the end value of dithiocarbamate formation in the reaction of thiuram disulfide with zinc oxide (in the absence of rubber). The crosslinking, as measured by the change of reciprocal equilibrium swelling per time unit is also a reaction whose rate increases with the sulfur concentration to the point where the compounds contain 6 gram atoms of sulfur per mole of thiuram disulfide. The optimum degrees of crosslinking are roughly proportional to the sulfur concentration; at high sulfur levels the vulcanizates tend to revert. As in the pure TMTD vulcanization, the TMTD decrease as well as the dithiocarbamate formation are always first order reactions. The reversion at higher sulfur levels as well as the complicated course of the increase of combined sulfur during vulcanization render all but impossible an accurate determination of the reaction order for the crosslinking at higher sulfur levels. Nevertheless, in vulcanizations with 1 mole TMTD per 1 or 2 gram atoms of sulfur the crosslinking is a first order reaction.


1990 ◽  
Vol 112 (1) ◽  
pp. 83-90 ◽  
Author(s):  
T. Jiang ◽  
T. E. Schellin

Horizontal motions of a tanker attached to a single-point mooring (SPM) terminal were predicted using digital simulation in the time domain. Excitations from steady current, gusting wind, and irregular seaway were included. Hydrodynamic forces generated by the ship’s motion and the action of its propeller and rudder were calculated in accordance with a previously validated, nonlinear quasi-steady four-quadrant maneuvering model, extended to include linear memory effects due to waves generated by the moving ship. Memory effects were approximated by a vectorial recursive state space model corresponding to a set of higher order differential equations. A nonlinear relationship of the force in the mooring hawser was assumed to represent restoring force characteristics of the SPM system. Wave excitation forces comprised first-order forces at wave frequencies and second-order drift forces at low frequencies. First-order wave forces were obtained by superposition of force components corresponding to regular wave components comprising the wave spectrum. Based on the low-frequency wave envelope, drift forces were calculated using mean drift force coefficients in regular waves. Selected sample simulations are presented to illustrate the use of this digital simulation method.


1984 ◽  
Vol 220 (1) ◽  
pp. 173-178 ◽  
Author(s):  
I E Woodrow ◽  
G A Manson

A general description of a system consisting of a hysteretic enzyme and a series of coupling enzymes is presented. The chloroplast enzyme sedoheptulose-1,7-bisphosphatase and a sequence of three coupling enzymes is used as an example. An analysis using first-order rate equations for the coupling enzymes shows that the observed relaxation time of the system is the sum of the relaxation times of the coupling enzymes and that of the hysteretic enzyme. The behaviour of a system with relatively low concentrations of coupling enzymes, where the first-order assumption is not valid, is analysed by computer stimulation. Several methods for the accurate determination of the relaxation time of the hysteretic enzyme are discussed.


1976 ◽  
Vol 1 (15) ◽  
pp. 145 ◽  
Author(s):  
D. Donald Davidson ◽  
Dennis G. Markle

Although the use of rubble-mound structures for protection of coastal areas is common throughout the world and considerable hydraulic design data have been developed to aid the designer, very little data are provided on the structural integrity of individual armor units and the effect of broken units on the stability of such structures. The forces to which such structures are subjected are complicated and vary with type and geometry of the structure, depth of water, bottom configuration seaward of the structure, water level relative to the crown of the structure, and wave dimensions. Since all of these parameters are involved, accurate determination of wave forces cannot be calculated; and although it is not impossible to model the structural strength of armor units or measure forces on individual armor units, there are physical limitations which make the tasks extremely difficult. There is one way, however, that a breakwater stability model, as it exists today, can provide useful information on this subject and that is to purposely break given numbers of armor units and observe the effect on the overall stability of the structure. Such tests have been conducted at the U. S. Army Engineer Waterways Experiment Station for the Atlantic Generating Station (AGS) Breakwater in which specific answers were desired; thus, the data are limited to the dolos armor unit. The data do provide, however, significant indications regarding the type and extent of breakage (cluster or random) that is most detrimental to the overall stability of the structure; whether costly reinforcing steel is warranted to assure reduced armor breakage; and where necessary, data from this type study can be used as a basis for setting maintenance criteria that will prevent deterioration of the breakwater due to armor unit breakage.


1982 ◽  
Vol 22 (04) ◽  
pp. 563-572
Author(s):  
J.A. Pinkster

Abstract Mean- and low-frequency wave drift forces on moored structures are important with respect to low-frequency motions and peak mooring loads. This paper addresses prediction of these forces on semisubmersible-type structures by use of computations based on three-dimensional (3D) potential theory. The discussion includes a computational method based on direct integration of pressure on the wetted part of the hull of arbitrarily shaped structures. Results of computations of horizontal drift forces on a six-column semisubmersible are compared with model tests in regular and irregular waves. The mean vertical drift forces on a submerged horizontal cylinder obtained from model tests also are compared with results of computations. On the basis of these comparisons, we conclude that wave drift forces on semisubmersible-type structures in conditions of waves without current can be predicted with reasonable accuracy by means of computations based on potential theory. Introduction Stationary vessels floating or submerged in irregular waves are subjected to large first-order wave forces and moments that are linearly proportional to the wave height and that contain the same frequencies as the waves. They also are subjected to small second-order mean- and low- frequency wave forces and moments that are proportional to the square of the wave height. Frequencies of second-order low-frequency components are associated with the frequencies of wave groups occurring in irregular waves.First-order wave forces and moments cause the well-known first-order motions with wave frequencies. First-order wave forces and motions have been investigated for several decades. As a result of these investigations, methods have been developed to predict these forces and moments with reasonable accuracy for many different vessel shapes.For semisubmersibles, which consist of a number of relatively slender elements such as columns, floaters, and bracings, computation methods have been developed to determine the hydrodynamic loads on those elements without accounting for interaction effects between the elements. For the first-order wave loads and motion problem, these computations give accurate results.This paper deals with the mean- and low-frequency second-order wave forces acting on stationary vessels in regular and irregular waves in general and presents a method to predict these forces on the basis of computations.The importance of mean- and low-frequency wave drift forces, from the point of view of motion behavior and mooring loads on vessels moored at point of view of motion behavior and mooring loads on vessels moored at sea, has been recognized only within the last few years. Verhagen and Van Sluijs, Hsu and Blenkarn, and Remery and Hermans showed that the low-frequency components of wave drift forces in irregular waves-even though relatively small in magnitude-can excite large-amplitude low- frequency horizontal motions in moored structures. It was shown for irregular waves that the drift forces contain components with frequencies coinciding with the natural frequencies of the horizontal motions of moored vessels. Combined with minimal damping of low-frequency horizontal motions of moored structures, this leads to large-amplitude resonant behavior of the motions (Fig. 1). Remery and Hermans established that low-frequency components in drift forces are associated with the frequencies of wave groups present in an irregular wave train.The vertical components of the second-order forces sometimes are called suction forces. SPEJ p. 563


1990 ◽  
Vol 04 (10) ◽  
pp. 1671-1692 ◽  
Author(s):  
G.G. CABRERA

First order phase transitions are rounded in solids of finite size. It is shown here that the above rounding is monitored by the correlation length ξL of the finite system, or equivalently by the so-called mass gap for the quantum Hamiltonian version of the model. Scaling with size is studied as a function of variable boundary conditions for the cylinder geometry (infinite strips with finite width), and a striking crossover is found in the mass gap behavior when the coupling g along the boundary becomes anti-periodic. For g>0, the rounding is exponential with size and an accurate determination of the spontaneous magnetization (order parameter) of the infinite system is obtained from numerical extrapolations.


1989 ◽  
Vol 107 ◽  
pp. 179-189
Author(s):  
J. Andersen ◽  
B. Nordström

AbstractApplication of digital cross-correlation spectroscopy to the spectra of the W Serpentis binaries SX Cas and RX Cas has allowed an accurate determination of the orbits and rotations of the (mass-losing) K-subgiant secondary components. The distortion of the primary radial-velocity curves due to the influence of the prominent accretion disks in these systems has been modelled to first order. This enables us to estimate K1 , and thereby the mass ratio q ≈ 0.30, to within ~±20%. The absolute radii of the secondaries are derived independently from the observed rotations and periods, assuming synchronous rotation. They show that the stars fill their Roche lobes, or at least very nearly so. Rough fits to the available photometry shows both primaries to be unevolved mid-B stars; that in RX Cas appears completely obscured by the disk. Preliminary spectroscopic data for W Ser and W Cru show some promise for similar analyses of these systems.


Author(s):  
R.D. Leapman ◽  
P. Rez ◽  
D.F. Mayers

Microanalysis by EELS has been developing rapidly and though the general form of the spectrum is now understood there is a need to put the technique on a more quantitative basis (1,2). Certain aspects important for microanalysis include: (i) accurate determination of the partial cross sections, σx(α,ΔE) for core excitation when scattering lies inside collection angle a and energy range ΔE above the edge, (ii) behavior of the background intensity due to excitation of less strongly bound electrons, necessary for extrapolation beneath the signal of interest, (iii) departures from the simple hydrogenic K-edge seen in L and M losses, effecting σx and complicating microanalysis. Such problems might be approached empirically but here we describe how computation can elucidate the spectrum shape.The inelastic cross section differential with respect to energy transfer E and momentum transfer q for electrons of energy E0 and velocity v can be written as


Author(s):  
M.A. Gribelyuk ◽  
M. Rühle

A new method is suggested for the accurate determination of the incident beam direction K, crystal thickness t and the coordinates of the basic reciprocal lattice vectors V1 and V2 (Fig. 1) of the ZOLZ plans in pixels of the digitized 2-D CBED pattern. For a given structure model and some estimated values Vest and Kest of some point O in the CBED pattern a set of line scans AkBk is chosen so that all the scans are located within CBED disks.The points on line scans AkBk are conjugate to those on A0B0 since they are shifted by the reciprocal vector gk with respect to each other. As many conjugate scans are considered as CBED disks fall into the energy filtered region of the experimental pattern. Electron intensities of the transmitted beam I0 and diffracted beams Igk for all points on conjugate scans are found as a function of crystal thickness t on the basis of the full dynamical calculation.


Sign in / Sign up

Export Citation Format

Share Document