Thermal Requirements for Surviving a Mass Rescue Incident in the Arctic: Preliminary Results

Author(s):  
Lawrence Mak ◽  
Brian Farnworth ◽  
Eugene H. Wissler ◽  
Michel B. DuCharme ◽  
Wendell Uglene ◽  
...  

Maritime and air traffic through the Arctic has increased in recent years. Cruise ship and commercial jet liners carry a large number of passengers. With increased traffic, there is a higher probability that a major disaster could occur. Cruise ship and plane accidents could be catastrophic and may require mass rescue. Due to the remote location, limited search and rescue resources, time for these resources to get to the accident location and large number of survivors, the retrieval time could be several days. Therefore, survivors may be required to survive on their own for days while they await rescue. Recognizing that the International Maritime Organization does not have specific thermal performance criteria for liferafts and lifeboats and personal and group survival kits, the Maritime and Arctic Survival Scientific and Engineering Research Team (MASSERT) initiated a research project to improve safety and provide input for advances to regulations. The objective of the project is to investigate if the current thermal protective equipment and preparedness available to people traveling in the Canadian Arctic are adequate for surviving a major air or cruise ship disaster and to identify the minimum thermal protection criteria for survival. This project builds on the results and tools developed in other research projects conducted by the team on thermal protection of liferafts, lifeboats and immersion suits. The project is divided into three major phases — clothing ensemble testing with thermal manikins, a physiology experiment on sustainable shivering duration and ensemble testing in Arctic conditions with human subjects. A numerical model uses these data to simulate survival scenarios. In the first phase of this project, the thermal resistance values of the protective clothing typically available to cruise ship and aircraft passengers were measured using two thermal manikins. The ensembles included Cabin Wear, Deck Wear, Expedition Wear, Abandonment Wear and protective clothing from Canada Forces Major Air Disaster Kit (MAJAID). Tests were conducted on dry and wet ensembles at 5°C and −15°C with and without wind. There is very good agreement between the thermal resistances measured by the two manikins. The differences in thermal resistances observed are likely caused by variations in fit and wrinkles and folds in the ensembles from dressing. With no wind, the thermal resistance is lowest with Cabin Wear and highest with MAJAID clothing inside the down-filled casualty bag. The Expedition Wear, the Abandonment Wear and the MAJAID clothing have about the same thermal resistance. With 7 metre-per-second wind, the thermal resistance of all ensembles decreased significantly by 30% to 70%. These results highlight the importance of having a shelter as a windbreak. For wet clothing ensembles at 5°C, the initial wet thermal resistance was 2 to 2.5 times lower than the dry value, and drying times ranged up to 60 hours. This highlights the importance of staying dry. Preliminary predictions from the numerical model show that the survivors in Expedition Wear, even with sleeping bag and tent, can be mildly hypothermic and need to depend heavily on shivering to maintain thermal balance. In a shelter, the predicted metabolic rate is roughly double the resting rate; it is triple the resting rate without protection from the wind. Further research is required to study shivering fatigue and age effects. Research on mass rescue scenarios for cruise ships and airplanes survivors should ideally involve subjects of both genders and the elderly.

Author(s):  
Lawrence Mak ◽  
Andrew Kuczora ◽  
Brian Farnworth ◽  
Rob Brown ◽  
Michel B. DuCharme

Lifeboats are used as an evacuation system on a wide variety of offshore structures and marine vehicles. Currently, International Maritime Organization (IMO) Lifesaving Appliances (LSA) Code does not specify thermal protection and ventilation criteria for lifeboats. A test program was conducted to assess the system thermal protection and microclimate of SOLAS approved lifeboats for the Arctic environment. Some of the research findings of the first phase experiments are reported in this paper. In conducting experiments with a 72-person SOLAS approved lifeboat, the study found that the lifeboat only had a ventilation rate of 2 litres per second with vents open only, which may not be adequate. Inadequate ventilation will result in high concentration of carbon dioxide, causing headache, dizziness, restlessness, breathing difficulty, sweating, and increased heat rate, cardiac output and blood pressure. All of these may adversely affect lifeboat occupants in performing survival tasks. Using a thermal manikin, only slight decrease in thermal resistance (less than 10%) was observed in many test cases, when active ventilation was implemented (ventilation rate of 31 and 42 litres per second) and when side hatches were opened (ventilation rate of 95 litres per second). This suggests that reasonable increase in ventilation rate may be implemented without trading off much in thermal protection. However, a more noticeable decreases in thermal resistance (15% to over 30%) were observed when clothing was wet. This suggests it is critical to stay dry. A mathematical model was also developed to assess heat and cold stress of lifeboat occupants under different environment, lifeboat, occupant and ventilation conditions.


2012 ◽  
Vol 441 ◽  
pp. 255-260 ◽  
Author(s):  
Wei Bang Chen ◽  
Ying Ying Wan ◽  
Fei Que ◽  
Xue Mei Ding

Flame retardant fabrics have been broadly used for protective clothing, which have strictly requirements on both flame retardancy and thermal protection. Usually, domestic laundering will be carried out frequently to clean these protective garments. However, little research on the performance durability of this type of fabrics after domestic laundering has been reported. This paper selected fabrics of 8 types of cotton and its blend fibers, which were treated with flame retardants Pyrovatex CP, Proban, CFR-201, SCJ-968 respectively. The damaged length, after flame time, after glow time, TPP value, thermal resistance value, weight, thickness, air permeability and water vapor permeability (WVP) of the samples were measured before and after 15 cycles domestic laundering cycles. Results show that the flame retardancy of the 8 fabrics reduce with launderings as measured by the increase in damaged length and after glow time. The TPP increase probably resulted from the increase in the thickness and thermal resistance of the finished fabrics. Domestic laundering resulted in only a slight change in the comfort properties of the fabrics.


Author(s):  
Lawrence Mak ◽  
Andrew Kuczora ◽  
Michel B. DuCharme ◽  
James Boone ◽  
Rob Brown ◽  
...  

Inflatable life rafts are currently used on almost all passenger, fishing and commercial vessels, and offshore oil installations. Worldwide, life rafts are the primary evacuation system from fishing vessels with relatively small crews to large Roll on/Roll off passenger vessels with over a thousand passengers and crew. While International Maritime Organization (IMO) standards currently require inflatable life raft components to “provide insulation” or “be sufficiently insulated”, there are no performance criteria for these requirements (IMO, 1996). In a passenger ship abandonment situation in cold water, passengers may be wearing very little personal protective clothing. Therefore, life rafts provide the only significant thermal protection against the cold ocean environment while they await rescue. Manufacturers equip life rafts with an insulated floor to reduce heat loss from direct contact with the cold ocean water. The insulation provided is critically important for life raft occupants who have little protective clothing. The heat loss of unprotected persons is drastically increased if there is a layer of water on the floor as would likely be the case when someone climbs into the life raft from the ocean or if water is splashed into the life raft in heavy weather. Experiments were conducted in mild cold (16°C water temperature and 19°C air temperature) and cold conditions (5°C water temperature and 5°C air temperature) to assess the thermal protection of a 16-person, Safety of Life at Sea (SOLAS) approved, commercially available life raft. This paper presents results in the mild cold condition only. It has been found that the wave height effect may be ignored as a first approximation to reduce the number of environmental variables because the results demonstrated that wave height effect is less important with leeway. Heat conductance decreases considerably with floor inflation. Heat conductance is about the same with floor inflated 50% and 100%. The CO2 concentration in the 11-person test exceeded 5000 ppm in less than an hour inside the life raft, with closed canopy and no active ventilation. This hostile microclimate inside the life raft suggests that active ventilation at a known rate is required to keep the CO2 level at a safe controlled level when longer duration tests are to be conducted in the future. Wet clothing has a significant effect on occupant heat loss.


2015 ◽  
Vol 4 (S1) ◽  
Author(s):  
Bernard Redortier ◽  
Emmanuelle Brossard ◽  
Remi Tillol ◽  
Remi Goffinet

2018 ◽  
Vol 36 (3) ◽  
pp. 151-164 ◽  
Author(s):  
Abu Shaid ◽  
Lijing Wang ◽  
Stanley M. Fergusson ◽  
Rajiv Padhye

Phase change material (PCM) in firefighting garment enhances protection and comfort. Wearing a protective clothing containing PCM, while fighting the fire, is a direct risk to the wearer as most PCMs used are flammable. This article reports a solution by using aerogel. Thermal liner fabric was treated with PCM and/or aerogel and then their thermal properties were analyzed. It has been found that the mean ignition time of PCM-containing thermal liner is around 3.3 s in current case while this value significantly increased to 5.5 s when the combination of aerogel and PCM was used. Moreover, the weight of the liner fabric with aerogel decreased in comparison to PCM-containing liner. Aerogel also slowed down the spreading of flame in PCM-containing fabric. Aerogel–coated liner showed superior heat resistance and the combination of aerogel with PCM increased the thermal resistance of PCM-containing liner.


2021 ◽  
Author(s):  
Michael Poulsen

<p><strong>Monitoring Svalbard’s environment and cultural heritage through citizen science by expedition cruises</strong></p><p>Michael K. Poulsen1, Lisbeth Iversen2, Ted Cheeseman3, Børge Damsgård4, Verena Meraldi5, Naja Elisabeth Mikkelsen6, Zdenka Sokolíčková7, Kai Sørensen8, Agnieszka Tatarek9, Penelope Wagner10, Stein Sandven2, and Finn Danielsen1</p><p>1NORDECO, 2NERSC, 3PCSC, 4UNIS, 5Hurtigruten, 6GEUS, 7University of Oslo, 8NIVA, 9IOPAN, 10MET Norway</p><p><strong>Why expedition cruise monitoring is important for Svalbard. </strong>The Arctic environment  is changing fast, largely due to increasing temperatures and human activities. The continuous areas of wilderness and the cultural heritage sites in Svalbard need to be managed based on a solid understanding.</p><p>The natural environment of Svalbard is rich compared to other polar regions. Historical remains are plentiful. The Svalbard Environmental Protection Act aims at regulating hunting, fishing, industrial activities, mining, commerce and tourism. Expedition cruises regularly reach otherwise rarely visited places.</p><p><strong>Steps taken to improve environmental monitoring. </strong>A workshop for enhancing the environmental monitoring efforts of expedition cruise ships was held in Longyearbyen in 2019, facilitated by the INTAROS project and the Association of Arctic Expedition Cruise Operators  (https://intaros.nersc.no/content/cruise-expedition-monitoring-workshop) with representatives of cruise operators, citizen science programs, local government and scientists. They agreed on a pilot assessment of monitoring programs during 2019.</p><p><strong>Results show the importance of cruise ship observations. </strong>The provisional findings of the pilot assessment suggest thatexpedition cruises go almost everywhere around Svalbard and gather significant and relevant data on the environment, contributing for example to an improved understanding of thestatus and distribution of wildlife. Observations are often documented with photographs. More than 150 persons contributed observations during 2019 to eBird and Happywhale. iNaturalist, not part of the pilot assessment, also received many contributions. The pilot assessment was unable to establish a useful citizen science program for testing monitoring of cultural remains.</p><p><strong>Conclusions relevant for monitoring and environmental management. </strong>Cruise ships collect environmental data that are valuable for the scientific community and for public decision-makers. The Governor of Svalbard isresponsible for environmental management in Svalbard. Data on the environment and on cultural remains from expedition cruises can be useful for the Governor’s office. Improved communication between citizen science programs and those responsible for environmental management decisions is likely to increase the quantity of relevant information that reaches public decision makers.</p><p><strong>Recommendations for improving the use of cruise ship observations and monitoring.</strong></p><ul><li>1) All cruise expedition ships should be equipped with tablets containing the apps for the same small selection of citizen scienceprograms so that they can easily upload records.</li> <li>2) Evaluation of data that can be created and how such data can contribute to monitoring programs, to ensure that data is made readily available in a form that is useful for institutions responsible for planning and improving environmental management.</li> <li>3) Clear lines of communication between citizen science program participants, citizen science program organizers, the scientific community and decision makers should be further developed.</li> <li>4) Developing expedition cruise monitoring is of high priority in Svalbard, but is also highly relevant to other polar regions.</li> <li>5) Further work is necessary to fully understand the feasibility and potential of coordinated expedition cruise operator based environmental observing in the Arctic.</li> </ul>


1990 ◽  
Vol 14 ◽  
pp. 345-345
Author(s):  
Dean R. Lindstrom

A numerical model which simultaneously computes grounded and ice-shelf flow was used to develop an equilibrium ice-sheet–ice-shelf system over Eurasia and the Arctic region. Present-day net accumulation rates and mean annual and July temperature values were used as base values for climatic variable specifications. The values were adjusted during the model run to account for changes in the ice-surface elevation and atmospheric CO2 concentration. The model-determined equilibrium ice-sheet configuration was used as input for additional runs to observe what effect removing the Arctic ice shelf and increasing the CO2 concentration from glacial to present-day values has on the ice sheet.At equilibrium, an ice shelf formed over the Arctic Ocean and Greenland and Norwegian seas. Ice easily grounded over the Barents, Kara, East Siberian, and Laptev seas. The grounded ice-sheet profile differs in Europe from most glacial geological reconstructions because the North Atlantic Current effect was not removed from the climatic adjustments. As a result, ice did not extend over the North Sea and onto the British Isles because of the North Atlantic Current's warming effect. Also, the precipitation rate over Europe was too high because of the moisture source the North Atlantic Current carries, and the ice sheet expanded beyond the field-determined ice-sheet margins in the region south-east of Finland.Removing most of the Arctic region's ice-shelf cover had little effect on the grounded ice sheet unless it rested upon a deformable sediment layer. The ice sheet was able to collapse within 10 000 years, however, when the CO2 concentration was gradually increased toward present-day values using the Vostok ice core's CO2 record from the last 18 000 years. Initially, most mass loss resulted from surface melting. Once the thickness decreased enough over some regions for the grounded ice to become ungrounded, however, most mass loss resulted from the ice shelf rapidly transporting the ice to the ice-shelf front and discharging it to the sea.


Sign in / Sign up

Export Citation Format

Share Document